Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Equivariant Analytic Localization of Group Representations - Laura Smithies

Equivariant Analytic Localization of Group Representations

(Autor)

Buch | Softcover
90 Seiten
2001
American Mathematical Society (Verlag)
9780821827253 (ISBN)
CHF 89,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
In 1990, Henryk Hecht and Joseph Taylor introduced a technique called analytic localization which vastly generalized the Borel-Weil theorem. This paper develops a refinement of the Hecht-Taylor method, called equivariant analytic localization. It also discusses the advantages that equivariant analytic localization has over analytic localization.
The problem of producing geometric constructions of the linear representations of a real connected semisimple Lie group with finite center, $G_0$, has been of great interest to representation theorists for many years now. A classical construction of this type is the Borel-Weil theorem, which exhibits each finite dimensional irreducible representation of $G_0$ as the space of global sections of a certain line bundle on the flag variety $X$ of the complexified Lie algebra $/mathfrak g$ of $G_0$.In 1990, Henryk Hecht and Joseph Taylor introduced a technique called analytic localization which vastly generalized the Borel-Weil theorem. Their method is similar in spirit to Beilinson and Bernstein's algebraic localization method, but it applies to $G_0$ representations themselves, instead of to their underlying Harish-Chandra modules. For technical reasons, the equivalence of categories implied by the analytic localization method is not as strong as it could be. In this paper, a refinement of the Hecht-Taylor method, called equivariant analytic localization, is developed. The technical advantages that equivariant analytic localization has over (non-equivariant) analytic localization are discussed and applications are indicated.

Introduction Preliminaries The category ${/mathcal T}$ Two equivalences of categories The category $D^b_{G_0}({/mathcal D}_X)$ Descended structures The category $D^b_{G_0}({/mathcal U}_0(/mathfrak g))$ Localization Our main equivalence of categories Equivalence for any ergular weight $/lambda$ Bibliography.

Erscheint lt. Verlag 1.9.2001
Reihe/Serie Memoirs of the American Mathematical Society
Zusatzinfo bibliography
Verlagsort Providence
Sprache englisch
Gewicht 198 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-13 9780821827253 / 9780821827253
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00