Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Elementary Linear Algebra - Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg

Elementary Linear Algebra

A Matrix Approach
Buch | Hardcover
451 Seiten
1999
Pearson (Verlag)
978-0-13-716722-7 (ISBN)
CHF 159,95 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Suitable for a sophomore-level course in Linear Algebra and based on the recommendations of the LACSG, this book focuses on matrix arithmetic, systems of linear equations, properties of Euclidean n-space, eigenvalues and eigenvectors, and orthogonality. It provides a coverage of vector spaces.
For a sophomore-level course in Linear Algebra.

Based on the recommendations of the LACSG, this introduction to linear algebra offers a matrix-oriented approach with more emphasis on problem solving and applications and less emphasis on abstraction than in a traditional course. Throughout the text, use of technology is encouraged. The focus is on matrix arithmetic, systems of linear equations, properties of Euclidean n-space, eigenvalues and eigenvectors, and orthogonality. Although matrix-oriented, the text provides a solid coverage of vector spaces.

1. Matrices, Vectors, and Systems of Linear Equations.


Matrices and Vectors. Linear Combinations, Matrix-Vector Products, and Special Matrices. Systems of Linear Equations. Gaussian Elimination. Applications of Systems of Linear Equations. The Span of a Set Vectors. Linear Dependence and Independence. Chapter 1 Review.



2. Matrices and Linear Transformations.


Matrix Multiplication. Applications of Matrix Multiplication. Invertibility and Elementary Matrices. The Inverse of a Matrix. The LU Decomposition of a Matrix. Linear Transformations and Matrices. Composition and Invertibility of Linear Transformations. Chapter 2 Review.



3. Determinants.


Cofactor Expansion. Properties of Determinants. Chapter 3 Review.



4. Subspaces and Their Properties.


Subspaces. Basis and Dimension. The Dimension of Subspaces Associated with a Matrix. Coordinate Systems. Matrix Representations of Linear Operators. Chapter 4 Review.



5. Eigenvalues, Eigenvectors, and Diagonalization.


Eigenvalues and Eigenvectors. The Characteristic Polynomial. Diagonalization of Matrices. Diagonalization of Linear Operators. Applications of Eigenvalues. Chapter 5 Review.



6. Orthogonality.


The Geometry of Vectors. Orthonormal Vectors. Least-Squares Approximation and Orthogonal Projection Matrices. Orthogonal Matrices and Operators. Symmetric Matrices. Singular Value Decomposition. Rotations of R3 and Computer Graphics. Chapter 6 Review.



7. Vector Spaces.


Vector Spaces and their Subspaces. Dimension and Isomorphism. Linear Tranformations and Matrix Representations. Inner Product Spaces. Chapter 7 Review.



Appendix: Complex Numbers.

Erscheint lt. Verlag 8.10.1999
Sprache englisch
Maße 210 x 261 mm
Gewicht 1250 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-13-716722-9 / 0137167229
ISBN-13 978-0-13-716722-7 / 9780137167227
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung für Studienanfänger

von Gerd Fischer; Boris Springborn

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95