Gewöhnliche Differentialgleichungen
Vieweg & Teubner (Verlag)
978-3-8154-2043-0 (ISBN)
1 Einleitung.- 1.1 Grundbegriffe und erste Einteilung.- 1.2 Besondere Aufgabenstellungen.- 1.3 Ziel weiterer Untersuchungen.- 2 Lineare Differentialgleichungen mit konstanten Koeffizienten.- 2.1 Lineare homogene Differentialgleichungen.- 2.2 Ansatzmethode zur Herstellung einer partikulären Lösung.- 3 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten.- 3.1 Lineare homogene Differentialgleichungssysteme.- 3.2 Ansatzmethode zur Herstellung einer partikulären Lösung.- 3.3 Variation der Konstanten.- 4 Eulersche Differentialgleichungen.- 5 Nichtlineare Differentialgleichungen.- 5.1 Geometrische Veranschaulichung.- 5.2 Existenz und Unität der Lösungen von Anfangswertaufgaben.- 5.3 Trennung der Veränderlichen.- 5.4 Exakte Differentialgleichungen.- 5.5 Differentialgleichungen zweiter Ordnung.- 6 Das Runge-Kutta-Verfahren.- 6.1 Aufgabe für numerische Verfahren.- 6.2 Ausgangsformel für Näherungsverfahren.- 6.3 Herleitung des Runge-Kutta-Verfahrens.- 6.4 Gütediskussion.- 6.5 Rechenschema.- 6.6 Runge-Kutta-Verfahren für Systeme.- 7 Potenzreihenansätze und Verallgemeinerungen.- 7.1 Potenzreihenentwicklung der Lösung.- 7.2 Verallgemeinerte Potenzreihenansätze.- 8 Rand- und Eigenwertaufgaben.- 8.1 Lineare Randwertaufgaben.- 8.2 Lineare Eigenwertaufgaben.- 9 Einführendes über dynamische Systeme.- 9.1 Einige Grundbegriffe.- 9.2 Autonome Systeme zweiter Ordnung.- Lösungen der Aufgaben.- Literatur.
| Erscheint lt. Verlag | 1.8.1994 |
|---|---|
| Reihe/Serie | Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte |
| Zusatzinfo | 188 S. 1 Abb. |
| Verlagsort | Wiesbaden |
| Sprache | deutsch |
| Maße | 165 x 251 mm |
| Gewicht | 302 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Schlagworte | Differentialgleichungen • Differenzialgleichungen • Gewöhnliche • Greensche Funktion • Mathematik für Ingenieure und Naturwissenschaftler • Meinhold • Ordinary differential equations • Randwertaufgabe • Randwertproblem • Wenzel |
| ISBN-10 | 3-8154-2043-1 / 3815420431 |
| ISBN-13 | 978-3-8154-2043-0 / 9783815420430 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich