Harmonic Analysis on Reductive, P-adic Groups
Seiten
2011
American Mathematical Society (Verlag)
978-0-8218-4985-9 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-4985-9 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
The papers in this volume present a broad picture of the current state of the art in $p$-adic harmonic analysis. The concepts are liberally illustrated with examples, usually appropriate for an upper-level graduate student in representation theory or number theory. The concrete case of the two-by-two special linear group is a constant touchstone.
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Representations of Reductive, $p$-adic Groups, which was held on January 16, 2010, in San Francisco, California. One of the original guiding philosophies of harmonic analysis on $p$-adic groups was Harish-Chandra's Lefschetz principle, which suggested a strong analogy with real groups. From this beginning, the subject has developed a surprising variety of tools and applications. To mention just a few, Moy-Prasad's development of Bruhat-Tits theory relates analysis to group actions on locally finite polysimplicial complexes; the Aubert-Baum-Plymen conjecture relates the local Langlands conjecture to the Baum-Connes conjecture via a geometric description of the Bernstein spectrum; the $p$-adic analogues of classical symmetric spaces play an essential role in classifying representations; and character sheaves, originally developed by Lusztig in the context of finite groups of Lie type, also have connections to characters of $p$-adic groups. The papers in this volume present both expository and research articles on these and related topics, presenting a broad picture of the current state of the art in $p$-adic harmonic analysis. The concepts are liberally illustrated with examples, usually appropriate for an upper-level graduate student in representation theory or number theory. The concrete case of the two-by-two special linear group is a constant touchstone.
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Representations of Reductive, $p$-adic Groups, which was held on January 16, 2010, in San Francisco, California. One of the original guiding philosophies of harmonic analysis on $p$-adic groups was Harish-Chandra's Lefschetz principle, which suggested a strong analogy with real groups. From this beginning, the subject has developed a surprising variety of tools and applications. To mention just a few, Moy-Prasad's development of Bruhat-Tits theory relates analysis to group actions on locally finite polysimplicial complexes; the Aubert-Baum-Plymen conjecture relates the local Langlands conjecture to the Baum-Connes conjecture via a geometric description of the Bernstein spectrum; the $p$-adic analogues of classical symmetric spaces play an essential role in classifying representations; and character sheaves, originally developed by Lusztig in the context of finite groups of Lie type, also have connections to characters of $p$-adic groups. The papers in this volume present both expository and research articles on these and related topics, presenting a broad picture of the current state of the art in $p$-adic harmonic analysis. The concepts are liberally illustrated with examples, usually appropriate for an upper-level graduate student in representation theory or number theory. The concrete case of the two-by-two special linear group is a constant touchstone.
Robert S. Doran, Texas Christian University, Ft. Worth, TX||Paul J. Sally, Jr. is at the University of Chicago, IL, USA.|Loren Spice, Texas Christian University, Ft. Worth, T
| Erscheint lt. Verlag | 9.8.2011 |
|---|---|
| Reihe/Serie | Contemporary Mathematics |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 530 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 0-8218-4985-9 / 0821849859 |
| ISBN-13 | 978-0-8218-4985-9 / 9780821849859 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95