Number Theoretic Methods
Springer-Verlag New York Inc.
978-1-4419-5239-4 (ISBN)
A limiting form of the q-Dixon 4?3 summation and related partition identities.- Arithmetical properties of solutions of linear second order q-difference equations.- Ramanujan’s Contributions to Eisenstein Series, Especially in His Lost Notebook.- New Applications of a Result of Galochkin on Linear Independence.- Partitions modulo prime powers and binomial coefficients.- Infinite sums, diophantine equations and Fermat’s last theorem.- On the nature of the “explicit formulas” in analytic number theory — a simple example.- Product representations by rationals.- On the distribution of ?P modulo 1.- Ramanujan’s formula and modular forms.- Waldspurger’s formula and central critical values of L-functions of newforms in weight aspect.- Primitive roots: a survey.- Zeta-Functions Defined by Two Polynomials.- Some Aspects on Interactions between Algebraic Number Theory and Analytic Number Theory.- On G-functions and Padé approximations.- A penultimate step toward cubic theta-Weyl sums.- Some Results in view of Nevanlinna Theory.- A Historical Comment about the GVT in Short Interval.- Convexity and Intersection of Random Spaces.- Generalized hypergeometric series and the symmetries of 3-j and 6-j coefficients.- Stability and New Non-Abelian Zeta Functions.- A hybrid mean value of L-functions and general quadratic Gauss sums.
| Erscheint lt. Verlag | 7.12.2010 |
|---|---|
| Reihe/Serie | Developments in Mathematics ; 8 |
| Zusatzinfo | XI, 441 p. |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| ISBN-10 | 1-4419-5239-X / 144195239X |
| ISBN-13 | 978-1-4419-5239-4 / 9781441952394 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich