Positive Operators and Semigroups on Banach Lattices
Springer (Verlag)
978-90-481-4205-7 (ISBN)
This book will be of interest to analysts whose work involves positive matrices and positive operators.
Positive Operators on Krein Spaces.- A Remark on the Representation of Vector Lattices as Spaces of Continuous Real-Valued Functions.- Domination of Uniformly Continuous Semigroups.- Sums and Extensions of Vector Lattice Homomorphisms.- Baillon’s Theorem on Maximal Regularity.- Fraction-Dense Algebras and Spaces.- An Alternative Proof of a Radon—Nikodym Theorem for Lattice Homomorphisms.- Some Remarks on Disjointness Preserving Operators.- Weakly Compact Operators and Interpolation.- Aspects of Local Spectral Theory for Positive Operators.- A Wiener—Young Type Theorem for Dual Semigroups.- Krivine’s Theorem and Indices of a Banach Lattice.- Representations of Archimedean Riesz Spaces by Continuous Functions.- Some Aspects of the Spectral Theory of Positive Operators.- Problem Section.
| Zusatzinfo | VIII, 152 p. |
|---|---|
| Verlagsort | Dordrecht |
| Sprache | englisch |
| Maße | 210 x 297 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| ISBN-10 | 90-481-4205-9 / 9048142059 |
| ISBN-13 | 978-90-481-4205-7 / 9789048142057 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich