Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Tangential Angle -

Tangential Angle

Buch | Softcover
224 Seiten
2010
Betascript Publishing (Verlag)
978-613-1-15684-7 (ISBN)
CHF 82,55 inkl. MwSt
  • Titel nicht im Sortiment
  • Artikel merken
High Quality Content by WIKIPEDIA articles! In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis. (Note, some authors define the angle as the deviation from the direction of the curve at some fixed starting point. This is equivalent to the definition given here by the addition of a constant to the angle or by rotating the curve). If a curve is given parametrically by (x(t), y(t)) then the tangential angle varphi at t is defined (up to a multiple of 2 ) by frac{(x'(t), y'(t))}{ x'(t), y'(t) } = (cos varphi, sin varphi). Thus the tangential angle specifies the direction of the velocity vector (x'(t), y'(t)) while the speed specifies its magnitude. The vector frac{(x'(t), y'(t))}{ x'(t), y'(t) } is called the unit tangent vector, so an equivalent definition is that the tangential angle at t is the angle varphi such that (cos varphi, sin varphi) is the unit tangent vector at t. If the curve is parameterized by arc length s, so x'(s), y'(s) = 1, then the definition simplifies to (x'(s), y'(s)) = (cos varphi, sin varphi).
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 613-1-15684-0 / 6131156840
ISBN-13 978-613-1-15684-7 / 9786131156847
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 60,00
Mathematische Zusammenhänge und ihre Anschauung - in der Ebene, im …

von Sergei Kovalenko

Buch | Hardcover (2025)
Springer (Verlag)
CHF 62,95