Tropical intersection theory and gravitational descendants
Intersections of tropical cycles and applications to enumerative geometry
Seiten
2010
Südwestdeutscher Verlag für Hochschulschriften
978-3-8381-1428-6 (ISBN)
Südwestdeutscher Verlag für Hochschulschriften
978-3-8381-1428-6 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
In this publication a tropical intersection theory is established with analogue notions and tools as its algebro-geometric counterpart. The developed theory, interesting as a subfield of convex geometry on its own, shows many relations to the intersection theory of toric varieties and other fields. In the second chapter, tropical intersection theory is used to define and study tropical gravitational descendants (i.e. Gromov-Witten invariants with incidence and "Psi-class" factors). It turns out that many concepts of the classical Gromov-Witten theory such as the WDVV equations can be carried over to the tropical world.
Johannes Rau studied algebraic geometry at TU Kaiserslautern. He received his diploma degree in 2005 and his Ph.D. degree in 2009 under supervision of Andreas Gathmann. In fall 2009, Rau attended the program on tropical geometry at MSRI, Berkeley.
| Erscheint lt. Verlag | 21.10.2015 |
|---|---|
| Sprache | englisch |
| Gewicht | 276 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| ISBN-10 | 3-8381-1428-0 / 3838114280 |
| ISBN-13 | 978-3-8381-1428-6 / 9783838114286 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Mathematische Zusammenhänge und ihre Anschauung - in der Ebene, im …
Buch | Hardcover (2025)
Springer (Verlag)
CHF 62,95