Cohomological Invariants: Exceptional Groups and Spin Groups
2009
American Mathematical Society (Verlag)
978-0-8218-4404-5 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-4404-5 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Focuses on invariants of G-torsors with values in mod p Galois cohomology - in the sense of Serre's lectures in the book Cohomological invariants in Galois cohomology - for various simple algebraic groups G and primes p. The author determines the invariants for the exceptional groups F4 mod 3, simply connected E6 mod 3, E7 mod 3, and E8 mod 5.
This volume concerns invariants of G-torsors with values in mod p Galois cohomology - in the sense of Serre's lectures in the book Cohomological invariants in Galois cohomology - for various simple algebraic groups G and primes p. The author determines the invariants for the exceptional groups F4 mod 3, simply connected E6 mod 3, E7 mod 3, and E8 mod 5. He also determines the invariants of Spinn mod 2 for n = 12 and constructs some invariants of Spin14. Along the way, the author proves that certain maps in nonabelian cohomology are surjective. These surjectivities give as corollaries Pfister's results on 10- and 12-dimensional quadratic forms and Rost's theorem on 14-dimensional quadratic forms. This material on quadratic forms and invariants of Spinn is based on unpublished work of Markus Rost. An appendix by Detlev Hoffmann proves a generalization of the Common Slot Theorem for 2-Pfister quadratic forms.
This volume concerns invariants of G-torsors with values in mod p Galois cohomology - in the sense of Serre's lectures in the book Cohomological invariants in Galois cohomology - for various simple algebraic groups G and primes p. The author determines the invariants for the exceptional groups F4 mod 3, simply connected E6 mod 3, E7 mod 3, and E8 mod 5. He also determines the invariants of Spinn mod 2 for n = 12 and constructs some invariants of Spin14. Along the way, the author proves that certain maps in nonabelian cohomology are surjective. These surjectivities give as corollaries Pfister's results on 10- and 12-dimensional quadratic forms and Rost's theorem on 14-dimensional quadratic forms. This material on quadratic forms and invariants of Spinn is based on unpublished work of Markus Rost. An appendix by Detlev Hoffmann proves a generalization of the Common Slot Theorem for 2-Pfister quadratic forms.
| Erscheint lt. Verlag | 1.7.2009 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Zusatzinfo | illustrations |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 171 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 0-8218-4404-0 / 0821844040 |
| ISBN-13 | 978-0-8218-4404-5 / 9780821844045 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Studienanfänger
Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 41,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95