Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Time Series Forecasting using Machine Learning - Tsung-wu Ho

Time Series Forecasting using Machine Learning

Case Studies with R and iForecast

(Autor)

Buch | Hardcover
IX, 131 Seiten
2025
Springer International Publishing (Verlag)
978-3-031-97945-3 (ISBN)
CHF 209,70 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book uses R package, iForecast, to conduct financial economic time series forecasting with machine learning methods, especially the generation of dynamic forecasts out-of-sample. Machine learning methods cover enet, random forecast, gbm, and autoML etc., including binary economic time series. The book explains the problem about the generation of recursive forecasts in machine learning framework, under which, there are no covariates, namely, input (independent) variables. This case is pretty common in real decision environment, for example, the decision-making wants 6-month forecasts in the real future, under which there are no covariates available; therefore, practitioners use recursive or multistep, forecasts. Besides macro-econometric modelling which uses VAR (vector autoregression) to overcome the problem of multivariate regression, this book offers a Machine-Learning VAR routine, which is found to improve the performance of multistep forecasting.

Tsung-Wu Ho is a professor at National Taiwan Normal University. His research interests are Asset Pricing, Machine Learning, Economic and Decision Making.

Preface.- Chapter 1 Time Series Basics in R.- Chapter 2 Predictive Time Series Modelling.- Chapter 3 Forecasting using Machine Learning Methods.- Chapter 4 Special Topics.- Chapter 5 Predictive Case Studies Training by Rolling.- References.

Erscheinungsdatum
Zusatzinfo IX, 131 p. 89 illus., 72 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft
Schlagworte Combination Forecasts • Econometric Forecasting • economic time series forecasting • machine learning, • multistep • neural network
ISBN-10 3-031-97945-1 / 3031979451
ISBN-13 978-3-031-97945-3 / 9783031979453
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse mit R und SPSS

von Wolfgang Kohn; Riza Öztürk

Buch | Softcover (2022)
Springer Gabler (Verlag)
CHF 69,95