Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems (eBook)
475 Seiten
Elsevier Science (Verlag)
978-0-443-26511-2 (ISBN)
David A. Wood has more than forty years of international gas, oil, and broader energy experience since gaining his Ph.D. in geosciences from Imperial College London in the 1970s. His expertise covers multiple fields including subsurface geoscience and engineering relating to oil and gas exploration and production, energy supply chain technologies, and efficiencies. For the past two decades, David has worked as an independent international consultant, researcher, training provider, and expert witness. He has published an extensive body of work on geoscience, engineering, energy, and machine learning topics. He currently consults and conducts research on a variety of technical and commercial aspects of energy and environmental issues through his consultancy, DWA Energy Limited. He has extensive editorial experience as a founding editor of Elsevier's Journal of Natural Gas Science & Engineering in 2008/9 then serving as Editor-in-Chief from 2013 to 2016. He is currently Co-Editor-in-Chief of Advances in Geo-Energy Research.
Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and reservoir characterization tasks. The book provides insights into how the performance of ML/DL models can be optimized-and sparse datasets of input variables enhanced and/or rescaled-to improve prediction performances. A variety of topics are covered, including regression models to estimate total organic carbon from well-log data, predicting brittleness indexes in tight formation sequences, trapping mechanisms in potential sub-surface carbon storage reservoirs, and more.Each chapter includes its own introduction, summary, and nomenclature sections, along with one or more case studies focused on prediction model implementation related to its topic. - Addresses common applied geological problems focused on machine and deep learning implementation with case studies- Considers regression, classification, and clustering machine learning methods and how to optimize and assess their performance, considering suitable error and accuracy metric- Contrasts the pros and cons of multiple machine and deep learning methods- Includes techniques to improve the identification of geological carbon capture and storage reservoirs, a key part of many energy transition strategies
| Erscheint lt. Verlag | 18.2.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Technik ► Elektrotechnik / Energietechnik |
| Wirtschaft | |
| ISBN-10 | 0-443-26511-9 / 0443265119 |
| ISBN-13 | 978-0-443-26511-2 / 9780443265112 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich