Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Portfolio Optimization - Daniel P. Palomar

Portfolio Optimization

Theory and Application
Buch | Hardcover
608 Seiten
2025
Cambridge University Press (Verlag)
978-1-009-42808-8 (ISBN)
CHF 139,60 inkl. MwSt
  • Versand in 3-4 Wochen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This text offers a deep dive into practical algorithms, departing from conventional Gaussian assumptions and exploring a wide range of portfolio formulations. A must-read for anyone interested in financial data modeling and portfolio design, it is suitable as a textbook for portfolio optimization and financial data modeling courses.
This comprehensive guide to the world of financial data modeling and portfolio design is a must-read for anyone looking to understand and apply portfolio optimization in a practical context. It bridges the gap between mathematical formulations and the design of practical numerical algorithms. It explores a range of methods, from basic time series models to cutting-edge financial graph estimation approaches. The portfolio formulations span from Markowitz's original 1952 mean–variance portfolio to more advanced formulations, including downside risk portfolios, drawdown portfolios, risk parity portfolios, robust portfolios, bootstrapped portfolios, index tracking, pairs trading, and deep-learning portfolios. Enriched with a remarkable collection of numerical experiments and more than 200 figures, this is a valuable resource for researchers and finance industry practitioners. With slides, R and Python code examples, and exercise solutions available online, it serves as a textbook for portfolio optimization and financial data modeling courses, at advanced undergraduate and graduate level.

Daniel P. Palomar is a Professor at the Hong Kong University of Science and Technology. He is recognized as EURASIP Fellow, IEEE Fellow, and Fulbright Scholar, and recipient of numerous research awards. His current research focus is on convex optimization applications in signal processing, machine learning, and finance. He is the author of many research articles and books, including 'Convex Optimization in Signal Processing and Communications'.

Preface; 1. Introduction; I. Financial Data: 2. Financial data: stylized facts; 3. Financial data: IID modeling; 4. Financial data: time series modeling; 5. Financial data: graphs; II. Portfolio Optimization: 6. Portfolio basics; 7. Modern portfolio theory; 8. Portfolio backtesting; 9. High-order portfolios; 10. Portfolios with alternative risk measures; 11. Risk parity portfolios; 12. Graph-based portfolios; 13. Index tracking portfolios; 14. Robust portfolios; 15. Pairs trading portfolios; 16. Deep learning portfolios; Appendices: Appendix A. Convex optimization theory; Appendix B. Optimization algorithms.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Gewicht 1401 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft Betriebswirtschaft / Management Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management Finanzierung
ISBN-10 1-009-42808-X / 100942808X
ISBN-13 978-1-009-42808-8 / 9781009428088
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich