Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Data Analysis and Applications 3 (eBook)

Computational, Classification, Financial, Statistical and Stochastic Methods
eBook Download: PDF
2020 | 3. Auflage
John Wiley & Sons (Verlag)
978-1-119-72182-6 (ISBN)

Lese- und Medienproben

Data Analysis and Applications 3 -
Systemvoraussetzungen
139,99 inkl. MwSt
(CHF 136,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into two parts: Computational Data Analysis, and Classification Data Analysis, with methods for both - providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.

Andreas Makrides is Associate Lecturer of Statistics at the University of Central Lancashire, Cyprus (UClan) and conducted postdoctoral research at the Laboratoire de Mathematiques Raphael Salem, Universite de Rouen, France. Alex Karagrigoriou is Professor of Probability and Statistics at the University of the Aegean, Greece. He is also the faculty?s Head of Graduate Studies and Director of the in-house Laboratory of Statistics and Data Analysis. Christos H. Skiadas is former vice-Rector at the Technical University of Crete, Greece and founder of its Data Analysis and Forecasting Laboratory. He continues his research in ManLab, in the faculty?s Department of Production Engineering and Management.
Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into two parts: Computational Data Analysis, and Classification Data Analysis, with methods for both - providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.

Andreas Makrides is Associate Lecturer of Statistics at the University of Central Lancashire, Cyprus (UClan) and conducted postdoctoral research at the Laboratoire de Mathematiques Raphael Salem, Universite de Rouen, France. Alex Karagrigoriou is Professor of Probability and Statistics at the University of the Aegean, Greece. He is also the faculty?s Head of Graduate Studies and Director of the in-house Laboratory of Statistics and Data Analysis. Christos H. Skiadas is former vice-Rector at the Technical University of Crete, Greece and founder of its Data Analysis and Forecasting Laboratory. He continues his research in ManLab, in the faculty?s Department of Production Engineering and Management.

Part 1. Computational Data Analysis and Methods
1. Semi-supervised Learning Based on Distributionally Robust Optimization, Jose Blanchet and Yang Kang.
2. Updating of PageRank in Evolving Treegraphs, Benard Abola, Pitos Seleka Biganda, Christopher Engstorm, John Magero Mango, Godwin Kakuba and Sergei Silvestrov.
3. Exploring The Relationship Between Ordinary PageRank, Lazy PageRank and Random Walk with Backstep PageRank for Different Graph Structures, Pitos Seleka Biganda, Benard Abola, Christopher Engstorm, John Magero Mango, Godwin Kakuba and Sergei Silvestrov.
4. On the Behavior of Alternative Splitting Criteria for CUB Model-based Trees, Carmela Cappelli, Rosaria Simone and Francesca Di Iorio.
5. Investigation on Life Satisfaction Through (Stratified) Chain Regression Graph Models, Federica Nicolussi and Manuela Cazzaro.

Part 2. Classification Data Analysis and Methods
6. Selection of Proximity Measures for a Topological Correspondence Analysis, Rafik Abdelssam.
7. Support Vector Machines: A Review and Applications in Statistical Process Monitoring, Anastasios Apsemidis and Stelios Psarakis.
8. Binary Classification Techniques: An Application on Simulated and Real Bio-medical Data, Fragkiskos G. Bersimis, Iraklis Varlamis, Malvina Vamvakari and Demosthenes B. Panagiotakos.
9. Some Properties of the Multivariate Generalized Hyperbolic Models, Stergios B. Fotopoulos, Venkata K. Jandhyala and Alex Paparas.
10. On Determining the Value of Online Customer Satisfaction Ratings ? A Case-based Appraisal, Jim Freeman.
11. Projection Clustering Unfolding: A New Algorithm for Clustering Individuals or Items in a Preference Matrix, Mariangela Sciandra, Antonio D?Ambrosio and Antonella Plaia.

Erscheint lt. Verlag 31.3.2020
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte alternative splitting criteria • cub model-based trees • Data Analysis • Datenanalyse • different graph structures • Distributionally Robust Optimization • francesca di iorio • john magero mango • pitos seleka biganda • real bio-medical data • Statistical Process Monitoring • Statistics • Statistik
ISBN-10 1-119-72182-2 / 1119721822
ISBN-13 978-1-119-72182-6 / 9781119721826
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich