Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Deep Learning in Quantitative Finance

(Autor)

Buch | Hardcover
400 Seiten
2026
John Wiley & Sons Inc (Verlag)
978-1-119-68524-1 (ISBN)
CHF 112,35 inkl. MwSt
  • Noch nicht erschienen (ca. März 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The complete and practical guide to one of the hottest topics in quantitative finance Deep learning, that is, the use of deep neural networks, is now one of the hottest topics amongst quantitative analysts. Deep Learning in Quantitative Finance provides a comprehensive treatment of deep learning and describes a wide range of applications in mainstream quantitative finance. Inside, you’ll find over ten chapters which apply deep learning to multiple use cases across quantitative finance. You’ll also gain access to a companion site containing a set of Jupyter notebooks, developed by the author, that use Python to illustrate the examples in the text. Readers will be able to work through these examples directly.

This book is a complete resource on how deep learning is used in quantitative finance applications. It introduces the basics of neural networks, including feedforward networks, optimization, and training, before proceeding to cover more advanced topics. You’ll also learn about the most important software frameworks. The book then proceeds to cover the very latest deep learning research in quantitative finance, including approximating derivative values, volatility models, credit curve mapping, generating realistic market data, and hedging. The book concludes with a look at the potential for quantum deep learning and the broader implications deep learning has for quantitative finance and quantitative analysts.



Covers the basics of deep learning and neural networks, including feedforward networks, optimization and training, and regularization techniques
Offers an understanding of more advanced topics like CNNs, RNNs, autoencoders, generative models including GANs and VAEs, and deep reinforcement learning
Demonstrates deep learning application in quantitative finance through case studies and hands-on applications via the companion website
Introduces the most important software frameworks for applying deep learning within finance

This book is perfect for anyone engaged with quantitative finance who wants to get involved in a subject that is clearly going to be hugely influential for the future of finance.

Contents
Acknowledgmentsxix 1 Introduction3 1.1 What this book is about3 1.2 The Rise of AI5 1.2.1 LLMs5 1.3 The Promise of AI in Quantitative Finance7 1.4 Practicalities7 1.4.1 The Examples7 1.4.2 Python and PyTorch8 1.4.3 Docker9 1.5 Reading this book10 2 Feed Forward Neural Networks13 2.1 Introducing Neural Networks13 2.1.1 Why activation must be non-linear15 2.1.2 Learning Representations17 2.2 Regression and Classification18 2.3 Activation Functions27 2.3.1 Linear28 Acknowledgmentsxix 1 Introduction3 1.1 What this book is about3 1.2 The Rise of AI5 1.2.1 LLMs5 1.3 The Promise of AI in Quantitative Finance7 1.4 Practicalities7 1.4.1 The Examples7 1.4.2 Python and PyTorch8 1.4.3 Docker9 1.5 Reading this book10 2 Feed Forward Neural Networks13 2.1 Introducing Neural Networks13 2.1.1 Why activation must be non-linear15 2.1.2 Learning Representations17 2.2 Regression and Classification18 2.3 Activation Functions27 2.3.1 Linear28 2.3.2 Sigmoid (Logistic)28 2.3.3 Heaviside (Binary)29 2.3.4 Hyperbolic Tangent (tanh)29 2.3.5 Rectified Linear Unit (ReLU)31 2.3.6 Leaky ReLU32 2.3.7 Parameteric rectified linear unit (PReLU)32 2.3.8 Gaussian Error Linear Unit (GELU)33 2.3.9 Exponential Linear Unit (ELU)33 2.3.10 Scaled Exponential Linear Unit (SELU)33 2.3.11 Swish33 2.3.12 Scaled Exponentially-Regularised Linear Units (SERLU)35 2.3.13 Softmax35 2.4 The Universal Function Approximation Theorem45 2.5 Conclusions48 3 Training Neural Networks49 3.1 Backpropagation and Adjoint Algorithmic Differentiation50 3.1.1 Adjoint Algorithmic Differentiation51 3.2 Data Preparation and Scaling53 3.2.1 Vectorization53 3.2.2 Input Normalization54 3.2.3 Handling Test and Validation Data57 3.2.4 Feature Engineering?57 3.3 Weight Initialization57 3.3.1 Initializing Weights58 3.3.2 Initializing Biases60 3.4 The Choice of Loss Function68 3.4.1 Regression68 3.4.2 Binary Classification74 3.4.3 Multi-class Classification79 3.4.4 Multi-label Classification81 3.5 Optimization Algorithms82 3.5.1 Basic Techniques82 3.5.2 Optimizers with Adaptive Learning Rates91 3.6 Common Training Problems97 3.6.1 Overfitting/Underfitting97 3.6.2 Defining Bias and Variance Mathematically100 3.6.3 Local Minima101 3.6.4 Saddle Points and Second Order Methods101 3.6.5 Vanishing and Exploding Gradients102 3.7 Batch Normalization104 3.8 Evaluation and Validation110 3.8.1 The Train / Test / Validation Split110 3.8.2 Evaluation Metrics113 3.9 Sobolev Training Using Function Derivatives124 3.9.1 Incorporating Derivatives125 3.9.2 Key Theorems126 3.9.3 Empirical Results127 3.10 Conclusions131 4 Regularisation 133 4.1 Introduction   Regularisation and Generalisation133 4.2 Weight Decay134 4.2.1 L2 Regularisation135 4.2.2 L1 Regularisation136 4.3 Early Stopping 137 4.4 Ensemble Methods and Dropout138 4.4.1 Bootstrap Aggregating (Bagging)139 4.4.2 Dropout140 4.5 Data Augmentation146 4.6 Other Regularisation Methods147 4.6.1 Batch Normalisation as Regularisation147 4.6.2 Multitask Learning147 4.7 Conclusions   Regularisation Strategy149 5 Hyperparameter Optimization 151 5.1 Introduction151 5.1.1 Types of Hyperparameter153 5.1.2 Types of HPO154 5.2 Manual155 5.3 Grid Search155 5.4 Random Search  158 5.5 Bayesian Optimization159 5.5.1 The Gaussian Process Surrogate Model   160 5.5.2 The Acquisition Function  161 5.5.3 Enhancements for Bayesian Hyperparameter Optimization162 5.6 Bandit-based165 5.6.1 Successive Halving (SHA)  166 5.6.2 Hyperband   169 5.6.3 BOHB  173 5.6.4 Asynchronous Successive Halving (ASHA)176 5.7 Population Based Training (PBT)181 5.8 Conclusions184 6 Convolutional Neural Networks 187 6.1 Introduction187 6.2 Convolutions188 6.2.1 Mathematics of Convolutions188 6.2.2 Convolutional Layers191 6.2.3 Edge Effects   Padding194 6.2.4 Multi-channel Convolutions   195 6.2.5 Selecting Filter Sizes198 6.2.6 Choosing the Number of Filters   203 6.3 Downsampling 203 6.3.1 Strided Convolutions203 6.3.2 Pooling   203 6.4 Data Augmentation206 6.5 Transfer Learning   Using Pre-trained Networks  211 6.6 Visualising Features213 6.6.1 Visualizing Filters and Feature Activations213 6.6.2 Gradient-based Visualization   214 6.7 Famous CNNs 223 6.7.1 LeNet  223 6.7.2 AlexNet   225 6.7.3 VGG 230 6.7.4 Inception234 6.7.5 ResNet   245 6.8 Conclusions on CNNs   252 7 Sequence Models 255 7.1 Introducing Sequence Models   255 7.2 Recurrent Neural Networks   257 7.2.1 Shallow RNNs258 7.2.2 Bidirectional RNNs   263 7.2.3 Deep RNNs267 7.2.4 Vanishing and Exploding Gradients269 7.2.5 Long Short Term Memory (LSTM)270 7.2.6 Gated Recurrence Unit (GRU)272 7.3 Neural Natural Language Processing  276 7.3.1 Introducing NLP   276 7.3.2 NLP Preprocessing   276 7.3.3 N-grams281 7.3.4 Evaluation Metrics for NLP   283 7.3.5 A Neural Probabilistic Language Model286 7.3.6 Word Embeddings293 7.3.7 RNNs and NLP   297 7.3.8 Sequence to Sequence Models301 7.3.9 Attention Mechanisms309 7.3.10 Transformers and Large Language Models314 7.4 Conclusions on Sequence Models322 8 Autoencoders 323 8.1 Introduction323 8.1.1 Encoders and Decoders325 8.2 Autoencoders and Singular-Valued Decomposition   325 8.2.1 PCA and SVD325 8.2.2 Linear Autoencoders replicate SVD328 8.2.3 Autoencoders as non-Linear PCA332 8.3 Shallow and Deep Autoencoders332 8.4 Regularized and Sparse Autoencoders   336 8.5 Denoising Autoencoders339 8.6 Autoencoders and Generative Models   341 8.7 Conclusion342 9 Generative Models 343 9.1 Introduction343 9.2 Evaluating Generative Model Performance   345 9.2.1 Inception Score   346 9.2.2 Fréchet Inception Distance  348 9.3 Energy-based Models (EBMs)   348 9.3.1 Boltzmann Machines349 9.3.2 Restricted Boltzmann Machines (RBMs)   353 9.3.3 Deep Belief Networks360 9.3.4 Deep Boltzmann Machines  362 9.3.5 Deep Energy-Based Models   363 9.3.6 Joint Energy-Based Model (JEM)373 9.3.7 Score-based Models   377 9.4 Variational Autoencoders (VAEs)383 9.4.1 Why Variational?383 9.4.2 Empirical View of VAEs  384 9.4.3 Probabilistic View of VAEs  384 9.4.4 Evidence Lower Bound (ELBO)   387 9.4.5 Stochastic Gradient Descent and ELBO   387 9.4.6 The Reparameterization Trick388 9.4.7 Marginal Likelihood   389 9.4.8 Challenges with VAEs389 9.5 Generative Adversarial Networks (GANs)   396 9.5.1 Early GANs   397 9.5.2 Stabilizing GANs   408 9.5.3 Controlling Generation424 9.5.4 High Resolution GANs436 9.5.5 Image Translation458 9.5.6 GAN Inversion485 9.5.7 Conclusions on GANs491 9.6 Latent Diffusion Models (LDMs)491 9.7 Conclusions on Generative Models  493 10 Deep Reinforcement Learning 495 10.1 Introduction495 10.2 Key Concepts in Reinforcement Learning   496 10.2.1 Defining RL496 10.2.2 Rewards   496 10.2.3 Agent and Environment  497 10.2.4 History and State499 10.2.5 Policy, Value and State-action Functions   501 10.2.6 Model  502 10.3 Markov Decision Processes (MDPs) and the Bellman Equations506 10.3.1 Optimal Policy508 10.4 Dynamic Programming and Policy Search   509 10.4.1 Policy Evaluation or Prediction   509 10.4.2 Policy Improvement   510 10.4.3 Policy Iteration   510 10.4.4 Value Iteration510 10.5 Monte Carlo Methods for RL   516 10.5.1 Monte Carlo Prediction517 10.5.2 Monte Carlo Control527 10.6 TD Learning535 10.6.1 TD Prediction535 10.6.2 On-policy TD Control   SARSA   538 10.6.3 Off-policy TD Control   Q-learning541 10.6.4 TD and Bias-Variance Trade-off   544 10.6.5 n-step TD   545 10.7 Deep Q Networks (DQNs)   546 10.7.1 Introducing DQNs546 10.7.2 Architecture of DQNs548 10.7.3 Experience Replay549 10.7.4 Training a DQN   551 10.7.5 DQN Variants553 10.8 Policy Gradient 561 10.8.1 Parametrised Policies561 10.8.2 Policy Gradient Theorem  563 10.8.3 REINFORCE564
10.9 Actor-Critic Methods   567 10.10Conclusions568 11 Derivative Valuation using Neural Networks 571 11.1 Introduction571 11.2 Derivative Valuation using Neural Networks trained as Non-parametric Models572 11.3 Derivative Valuation Function Approximation584 11.3.1 Deeply Learning Derivatives   586 11.3.2 Controlling Asymptotic Behaviour598 11.3.3 Fine Tuning   599 11.3.4 Conclusions on Derivative Valuation Function Approximation 601 12 High Dimensional PDE and BSDE Solvers 603 12.1 Introduction603 12.2 Deep Galerkin Method (DGM)604 12.2.1 Introduction604 12.2.2 Algorithm608 12.2.3 Theorems609 12.2.4 Numerical Examples   610 12.3 Deep BSDE Solvers619 12.3.1 Introducing Backward Stochastic Differential Equations   619 12.3.2 Deep BSDE Algorithm621 12.3.3 Deep BSDEs in Quant Finance   623 12.3.4 Conclusions on Deep BSDE Solvers640 12.4 Projection and Martingale Solvers641 12.5 Deep Path Dependent PDEs (DPPDE)642 12.6 Physics Informed Neural Networks (PINNs)644 12.7 Deep Backward Dynamic Programming (DBDP)  646 12.8 Deep Splitting (DS)647 12.9 Conclusions649 13 Deep Monte Carlo and Optimal Stopping 651 13.1 Introduction651 13.2 Deep Monte Carlo   653 13.2.1 Deep Importance Sampling   653 13.2.2 Learning Control Variates  660 13.2.3 Deep Weighted Monte Carlo   671 13.2.4 Conclusions on Deep Monte Carlo685 13.3 Deep Optimal Stopping and Applications   685 13.3.1 American and Bermudan Options685 13.3.2 American Monte Carlo686 13.3.3 Deep Optimal Stopping for Valuation and XVA690 13.4 Conclusion   Deep Monte Carlo703 14 Static Replication using Neural Networks 705 14.1 (Semi) Static Replication705 14.2 Neural Static Replication708 14.2.1 Regress Now or Later?708 14.2.2 Neural Regress Later709 14.3 Conclusions on Neural Static Replication716 15 Volatility Surfaces 717 15.1 Introduction717 15.2 Volatility Surface Models718 15.2.1 Definitions   718 15.2.2 Heston   719 15.2.3 SABR  719 15.2.4 Rough Bergomi   720 15.2.5 Calibrating Volatility Models   721 15.3 Deep Learning Volatility Surfaces722 15.4 Deep Local Volatility   736 15.4.1 The Dupire Local Volatility   736 15.4.2 Fitting a Local Volatility Consistent Pricing Function737 15.4.3 Fitting self-consistent Implied and Local Volatilities   739 15.4.4 Conclusions on Deep Local Volatility  750 15.5 Conclusions750 16 Model Calibration 751 16.1 Introduction751
16.2 Model Calibration   752 16.2.1 One or Two Step752 16.2.2 Heston   752 16.2.3 Short rate / HJM models  760 16.3 Conclusion on Deep Calibration767 17 XVA 769 17.1 Introduction769 17.2 Credit Curve Mapping771 17.2.1 Classification Approach772 17.2.2 Regression Approach774 17.3 Exposure Calculation using Neural Networks784 17.4 Conclusions on Deep XVA   791 18 Generating Realistic Market Data 793 18.1 Introduction and Classical Methods  793 18.2 Motivation and Applications of Synthetic Financial Market Data796 18.2.1 Motivation for Synthetic Financial Market Data 796 18.2.2 Applications of Synthetic Financial Market Data 797 18.3 Time Series Generation798 18.3.1 Empirical Properties of Financial Time Series798 18.3.2 Empirical Tests801 18.3.3 Time Series Generation809 18.3.4 Conclusions on Time-Series Generation   862 18.4 Generating Higher Dimensional Market Data Structures864 18.4.1 Generating Yield Curves  864 18.4.2 Generating Correlation Matrices   872 18.4.3 Generating Volatility Surfaces883 18.5 Completing Market Data - imputing missing values886 18.6 Conclusions   Synthetic Market Data  888 19 Deep Hedging 893 19.1 Introduction893 19.2 Approaches to Deep Hedging   894 19.2.1 Introduction894 19.2.2 Target Applications   896 19.2.3 Datasets896 19.2.4 Duration and Frequency  897 19.2.5 State and Action898 19.2.6 Reward / Objective   898 19.2.7 RL Methodology   900 19.2.8 Network Architecture917 19.2.9 Results   926 19.2.10Conclusions   the Deep Hedging Literature935 19.3 Deep Hedging Examples935 19.3.1 Target Application936 19.3.2 Datasets936 19.3.3 Duration and Frequency  936 19.3.4 State and Action936 19.3.5 Reward / Objective   937 19.3.6 Methodology937 19.3.7 Implementation   938 19.3.8 Results   941 19.4 Conclusion942 20 The Future Quant 957 20.1 Conclusion on Deep Learning   957 20.2 The Future of Quantitative Analytics  959 20.3 The Future Quant   960 20.4 A Final Word960

Erscheinungsdatum
Reihe/Serie Wiley Finance
Verlagsort New York
Sprache englisch
Maße 170 x 244 mm
Themenwelt Wirtschaft Betriebswirtschaft / Management
ISBN-10 1-119-68524-9 / 1119685249
ISBN-13 978-1-119-68524-1 / 9781119685241
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
betriebswirtschaftliche Analyse- und Planungsverfahren

von Oliver Mußhoff; Norbert Hirschauer

Buch | Softcover (2024)
Vahlen (Verlag)
CHF 55,70
Ein steuerlicher Praxisleitfaden

von Thorsten Klinkner; Domenik Wagener

Buch | Softcover (2022)
Springer Fachmedien Wiesbaden GmbH (Verlag)
CHF 55,95