Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Monetizing Data (eBook)

How to Uplift Your Business
eBook Download: EPUB
2018
John Wiley & Sons (Verlag)
978-1-119-12515-0 (ISBN)

Lese- und Medienproben

Monetizing Data - Andrea Ahlemeyer-Stubbe, Shirley Coleman
Systemvoraussetzungen
58,99 inkl. MwSt
(CHF 57,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Practical guide for deriving insight and commercial gain from data 

Monetising Data offers a practical guide for anyone working with commercial data but lacking deep knowledge of statistics or data mining. The authors - noted experts in the field - show how to generate extra benefit from data already collected and how to use it to solve business problems.  In accessible terms, the book details ways to extract data to enhance business practices and offers information on important topics such as data handling and management, statistical methods, graphics and business issues. The text presents a wide range of illustrative case studies and examples to demonstrate how to adapt the ideas towards monetisation, no matter the size or type of organisation.

The authors explain on a general level how data is cleaned and matched between data sets and how we learn from data analytics to address vital business issues. The book clearly shows how to analyse and organise data to identify people and follow and interact with them through the customer lifecycle. Monetising Data is an important resource:

  • Focuses on different business scenarios and opportunities to turn data into value
  • Gives an overview on how to store, manage and maintain data
  • Presents mechanisms for using knowledge from data analytics to improve the business and increase profits
  • Includes practical suggestions for identifying business issues from the data

Written for everyone engaged in improving the performance of a company, including managers and students, Monetising Data is an essential guide for understanding and using data to enrich business practice.



Andrea Ahlemeyer-Stubbe is Director of Strategical Analytics at the servicepro Agentur für Dialogmarketing und Verkaufsförderung GmbH, Munich, Germany.

Shirley Coleman is Technical Director of ISRU at the School of Mathematics and Statistics, Newcastle University, UK.


Practical guide for deriving insight and commercial gain from data Monetising Data offers a practical guide for anyone working with commercial data but lacking deep knowledge of statistics or data mining. The authors noted experts in the field show how to generate extra benefit from data already collected and how to use it to solve business problems. In accessible terms, the book details ways to extract data to enhance business practices and offers information on important topics such as data handling and management, statistical methods, graphics and business issues. The text presents a wide range of illustrative case studies and examples to demonstrate how to adapt the ideas towards monetisation, no matter the size or type of organisation. The authors explain on a general level how data is cleaned and matched between data sets and how we learn from data analytics to address vital business issues. The book clearly shows how to analyse and organise data to identify people and follow and interact with them through the customer lifecycle. Monetising Data is an important resource: Focuses on different business scenarios and opportunities to turn data into value Gives an overview on how to store, manage and maintain data Presents mechanisms for using knowledge from data analytics to improve the business and increase profits Includes practical suggestions for identifying business issues from the data Written for everyone engaged in improving the performance of a company, including managers and students, Monetising Data is an essential guide for understanding and using data to enrich business practice.

Andrea Ahlemeyer-Stubbe is Director of Strategical Analytics at the servicepro Agentur für Dialogmarketing und Verkaufsförderung GmbH, Munich, Germany. Shirley Coleman is Technical Director of ISRU at the School of Mathematics and Statistics, Newcastle University, UK.

List of Figures


Figure 1.1 Where does big data come from?
Figure 1.2 Big data empowers business
Figure 1.3 Roadmap to success
Figure 1.4 Wish list for generating money out of data
Figure 1.5 Monetising data
Figure 2.1 Deming’s ‘Plan, Do, Check, Act’ quality improvement cycle
Figure 2.2 Six Sigma quality improvement cycle
Figure 2.3 Example of data maturity model
Figure 2.4 Data improvement cycle
Figure 3.1 Big data definition
Figure 3.2 Internet of things timeline
Figure 3.3 Example data structure
Figure 3.4 NoSQL management systems
Figure 3.5 Big data structure and latency
Figure 4.1 Supervised learning
Figure 4.2 Unsupervised learning
Figure 4.3 The CRISP‐DM process
Figure 4.4 The SEMMA process
Figure 4.5 General representation of the data mining process
Figure 4.6 Time periods for data mining process
Figure 4.7 Stratified sampling
Figure 4.8 Lift chart for model comparison
Figure 4.9 Lift chart at small scale
Figure 4.10 An example of model control
Figure 5.1 Raw data from a customer transaction
Figure 5.2 Bar chart of relative frequencies
Figure 5.3 Example of cumulative view
Figure 5.4 Example of a Pareto chart
Figure 5.5 Example of a pie chart
Figure 5.6 Scatterplot of company age and auditing behaviour with LOWESS line
Figure 5.7 Scatterplot of design options
Figure 5.8 Ternary diagram showing proportions
Figure 5.9 Radar plot of fitness panel data
Figure 5.10 Example of a word cloud
Figure 5.11 Example of a mind map
Figure 5.12 Location heat map
Figure 5.13 Density map for minivans
Figure 5.14 SPC chart of shipping journeys
Figure 5.15 Decision tree analysis for older workers
Figure 5.16 Gains chart
Figure 5.17 Lift chart
Figure 5.18 ROC curve development during predictive modelling
Figure 6.1 Example of logistic regression
Figure 6.2 Corrected logistic regression
Figure 6.3 Decision tree
Figure 6.4 Artificial neural network
Figure 6.5 Bayesian network analysis of survey data
Figure 6.6 Bayesian network used to explore what‐if scenarios
Figure 6.7 Plot of non‐linear separation on a hyperplane
Figure 6.8 Dendrogram from hierarchical cluster analysis
Figure 6.9 Parallel plot from K‐means cluster analysis
Figure 6.10 Kohonen network with two‐dimensional arrangement of the output neurons
Figure 6.11 SOM output
Figure 6.12 T‐SNE output
Figure 6.13 Correspondence analysis output
Figure 6.14 Association rules
Figure 6.15 Association analysis of products
Figure 6.16 Comparison of customer base and population
Figure 6.17 Relationship between energy usage and deprivation
Figure 6.18 Map showing prices
Figure 7.1 Strategic opportunities
Figure 7.2 How data can boost top‐ and bottom‐line results
Figure 7.3 Typical data request
Figure 7.4 Observed data and usage
Figure 7.5 Maslow’s hierarchy of needs
Figure 7.6 Data sources to empower consumer business
Figure 7.7 Ready information on market opportunities
Figure 7.8 Word cloud from keyword occurrences
Figure 7.9 Using different data sources for analytics
Figure 7.10 Daily sleep patterns
Figure 7.11 Predictive analytics in insurance
Figure 8.1 Pathways to monetising data
Figure 8.2 Segmentation features of walk‐in customers
Figure 8.3 Business opportunities
Figure 9.1 Paths to monetisation
Figure 9.2 Pareto diagram of customer compliments
Figure 9.3 Graphical dashboard
Figure 9.4 Decrypting the DNA of the best existing customers
Figure 9.5 Aspects of digital maturity
Figure 9.6 Closed loop of B2B customer profiling – continuous learning
Figure 9.7 Automated B2B lead generation system
Figure 9.8 New methods, new insights, smart business
Figure 9.9 Misleading scatterplots
Figure 9.10 Scatterplot with multiple features
Figure 9.11 Histogram of suspicious‐quality recordings
Figure 10.1 The evolution of data analytics
Figure 10.2 Cumulative distribution of risk scores
Figure 10.3 Data sources in the shipping industry
Figure 10.4 Optimum speed recommendation
Figure 10.5 Pruned decision tree
Figure 10.6 Detail from decision tree
Figure 10.7 Customised communication
Figure 10.8 Individualised communication
Figure 10.9 Complexity of data mining steps
Figure 10.10 Data in the customer journey
Figure 10.11 Intelligent profiles and segments in B2C
Figure 10.12 Personalised journey
Figure 10.13 The reach of social media
Figure 10.14 The power of social media
Figure 10.15 Using peer group behaviour
Figure 10.16 National statistics oil prices
Figure 10.17 Example of reports portal
Figure 10.18 Making a business out of boring statistics
Figure 10.19 Right place, right time
Figure...

Erscheint lt. Verlag 1.2.2018
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften
Wirtschaft Betriebswirtschaft / Management Finanzierung
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte Andrea Ahlemeyer-Stubbe • Big Data • Business data processing • changes in attitude to data • Computer Science • Data Analysis • Data handling • data handling and quality • data improvement and data transformation • Data Management • data management and customer lifetime • data management and focus options • data management and product lifetime • data matching • Data Mining • data mining and statistical methods • Data Mining Statistics • Data Ownership • Data Science • data storage • Data Types • Datenanalyse • how to monetise data • Informatik • Introduction to monetising data • legacy data sources • Monetising data • Open Data • planning ahead • predictive analytics • Reshaping data to give useful summaries • resources for monetising data • Shirley Coleman • sources of data • Statistics • Statistik • tailored data cleaning and compatibility issues • The data improvement cycle • types of available data • Wirtschaftsinformatik
ISBN-10 1-119-12515-4 / 1119125154
ISBN-13 978-1-119-12515-0 / 9781119125150
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover advanced techniques and best practices for efficient search …

von Prashant Agrawal; Jon Handler; Soujanya Konka

eBook Download (2025)
Packt Publishing (Verlag)
CHF 29,30
The definitive guide to creating production-ready Python applications …

von Eric Narro

eBook Download (2025)
Packt Publishing (Verlag)
CHF 29,30