Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Contemporary Perspectives in Data Mining -

Contemporary Perspectives in Data Mining

Buch | Hardcover
170 Seiten
2017
Information Age Publishing (Verlag)
978-1-64113-055-4 (ISBN)
CHF 129,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The Contemporary Perspectives on Data Mining series features blind refereed research on data mining methods and applications, targeting both academics and business practitioners.
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner.

Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups.

Data mining applications are in finance (banking, brokerage, and insurance), marketing (customer relationships, retailing, logistics, and travel), as well as in manufacturing, health care, fraud detection, homeland security, and law enforcement.

Kenneth D. Lawrence, New Jersey Institute of Technology. Ronald K. Klimberg, Saint Joseph’s University.

Section I. Predictive Analytics

Chapter 1. Bootstrap Aggregation for Neural Network Forecasting of Supply Chain Order Quantity; Mark T. Leung and Shaotao Pan.

Chapter 2. Combining Retrospective and Predictive Analytics for More Robust Decision Support; Thomas Ott and Stephan Kudyba.

Chapter 3. Predictive Analytical Model of the CEO Compensation of Major U.S. Corporate Insurance Companies; Kenneth Lawrence, Gary Kleinman, and Sheila Lawrence.

Section II. Business Applications.

Chapter 4. Analyzing Operational and Financial Performance of U.S. Hospitals Using Two-Stage Production Process; Dinesh Pai and Hengameh Hosseini.

Chapter 5. Digital Disruption: How E-Commerce Is Changing the Grocery Game; Will Greerer, Gregory Smith, David Hyland, and Mark Frolick.

Chapter 6. The Hazards of Subgroup Analysis in Randomized Business Experiments and How to Avoid Them; B. D. McCullough.

Chapter 7. Business Intelligence Challenges for Small and Medium-Sized Business: Leveraging Existing Resources; Nick Perrino, Gregory Smith, David Hyland, and Mark Frolick.

Section III. Topics In Data Mining.

Chapter 8. Data Mining Techniques Applied to Outcome Analysis and Validation for the Futures Drug and Alcohol Rehabilitation Center; Virginia Miori and Catherine Cardamone.

Chapter 9. An Extended H-Index: A New Method to Evaluate Scientists' Impact; Feng Yang, Xiya Zu, and Zhimin Huang.

Chapter 10. Why We Need Analytics Grand Rounds; Ronald Klimberg, Richard Pollack, and Richard Herschel.

About the Editors.

Erscheinungsdatum
Reihe/Serie Contemporary Perspectives in Data Mining
Sprache englisch
Maße 156 x 234 mm
Gewicht 419 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Wirtschaft Betriebswirtschaft / Management Finanzierung
ISBN-10 1-64113-055-5 / 1641130555
ISBN-13 978-1-64113-055-4 / 9781641130554
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95