Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Shape Memory Alloy Valves (eBook)

Basics, Potentials, Design
eBook Download: PDF
2015 | 1st ed. 2015
IX, 214 Seiten
Springer International Publishing (Verlag)
978-3-319-19081-5 (ISBN)

Lese- und Medienproben

Shape Memory Alloy Valves -
Systemvoraussetzungen
85,59 inkl. MwSt
(CHF 83,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book introduces shape memory alloy technology with a specific focus on valve applications. The authors describe application characteristics as well the current and potential uses of this technology. They include an overview of thermal and electrical valves as well as detailed valve design strategies.

Alexander Czechowicz, PhD is the manager of the Shape Memory Applications group at the Community for Materials and Tools Research and co-founder of FG-INNOVATION. Sven Langbein, PhD is the research & development manager for industrial Shape Memory Alloy Applications and co-founder of FG-INNOVATION.

Alexander Czechowicz, PhD is the manager of the Shape Memory Applications group at the Community for Materials and Tools Research and co-founder of FG-INNOVATION. Sven Langbein, PhD is the research & development manager for industrial Shape Memory Alloy Applications and co-founder of FG-INNOVATION.

Preface 6
Contents 8
Contributors 10
Chapter 1: Introduction 11
Chapter 2: Valve Technology: State of the Art and System Design 13
2.1 Introduction: Actuated Valves in Applications 13
2.2 Electrical Valve Systems 15
2.2.1 Introduction 15
2.2.1.1 SMA: An Actuator Variant with Potential for Industrial Automation 15
2.2.1.2 A New Approach 15
2.2.1.3 Costs of the SMA Actuator 15
2.2.1.4 SMA and Industrial Requirements 15
2.2.1.5 Voltage Supply 16
2.2.1.6 Protection Type (NEMA, IP) 16
2.2.1.7 Ambient and Operating Temperatures 16
2.2.1.8 Certifications 17
2.2.1.9 Customer Benefits and Summary 17
2.2.1.10 Summary 17
2.2.2 Solenoid Valves—Basics 17
2.2.2.1 Physical Basics of Solenoid Drives 17
2.2.2.2 Solenoid Valves: Industrial Demands and Standard Design Types 19
2.2.2.3 The Main Requirements of Solenoid Valves 21
2.2.2.4 Subordinate Requirements of Solenoid Valves 22
2.2.3 Examples of Solenoid Valves 24
2.2.3.1 Direct-Acting 2-Way Plunger Valve 24
2.2.3.2 Direct-Acting Toggle Valve 25
2.2.3.3 Direct-Acting Pivoted Armature Valve 25
2.2.3.4 Direct-Acting Pivoted Rocker Valve 26
2.2.3.5 Diaphragm Valve with Plunger Pilot Control 27
2.3 Thermostatic Valve Systems 28
2.3.1 Introduction 28
2.3.2 Examples of Thermal Valves 29
2.3.2.1 Heating Thermostat Valve 29
2.3.2.2 Thermostatic Mixing Valves 30
2.3.2.3 Scald Protector 30
References 32
Chapter 3: Introduction to Shape Memory Alloy Technology 33
3.1 Basics of the Shape Memory Effect 33
3.2 Shape Memory Effects 35
3.2.1 The One-Way Effect 36
3.2.2 The Extrinsic Two-Way Effect 37
3.2.3 The Intrinsic Two-Way Effect 38
3.2.4 The Pseudo-Elastic Effect 39
3.3 Shape Memory Alloy Types 40
3.3.1 Binary Nickel-Titanium Alloys 41
3.3.2 Ternary and Quaternary Nickel-Titanium Alloys 42
3.3.3 R-Phase NiTi Alloys 46
3.3.4 Copper-Based Alloys 47
3.4 Manufacturing of Shape Memory Alloys 47
References 49
Chapter 4: Introduction to Shape Memory Alloy Actuators 51
4.1 General Overview of SMA Actuators 51
4.2 Influence of Mechanical Preload 54
4.3 Dynamic Behavior of SMA Actuators 56
4.3.1 Comparison of Cyclical Dynamics in Thermal Applications 57
4.3.2 Comparison of Cyclical Dynamics in Electric Applications 58
4.4 Fatigue of Shape Memory Actuators 64
4.4.1 Influence of Joining 65
4.4.2 Influence of Stroke and Load 67
4.5 Designs of SMA Actuators 69
4.5.1 Spring Actuator with Heating Element 69
4.5.2 Standardized Arc-Shaped Wire Actuator 71
4.5.3 Integrated Wire Actuator with Heating Element 72
4.6 Actuator Systems Compared 74
4.6.1 Electrical Drive Systems 74
4.6.1.1 Electric Motors 74
4.6.1.2 Solenoids 75
4.6.1.3 Electrified Expansion Elements 75
4.6.2 Thermal Actuators 78
4.6.2.1 Thermo-Bimetals 78
4.6.2.2 Expansion Elements 79
References 82
Chapter 5: Sensing Properties of SMA Actuators and Sensorless Control 83
5.1 Introduction 83
5.2 Material Behavior 83
5.3 Sensor/Actuator Behavior 85
5.4 Electronics 91
5.5 Control 92
5.5.1 Resistance to Deflection Sensor Mapping 93
5.5.2 Feedback Control Scheme 94
5.6 Results of Single SMA-Flexure Control 95
References 96
Chapter 6: Potentials of Shape Memory Technology in Industrial Applications 98
6.1 Actuators 99
6.1.1 Opportunities and Risks 101
6.1.2 Application Potentials 102
6.2 Spring/Damping Elements 103
6.2.1 Opportunities and Risks 104
6.2.2 Application Potentials 105
6.3 Sensors 106
6.3.1 Opportunities and Risks 106
6.3.2 Application Potentials 107
References 107
Chapter 7: Shape Memory Valves: Motivation, Risks, and Potentials 109
7.1 Introduction and Classification of SMA Valves 109
7.2 Benefits and Handicaps of SMA Valves 111
7.3 SMA Valve Potentials 114
7.3.1 Dynamic Response 115
7.3.2 Ambient Temperature Range 115
7.3.3 Miniaturization 115
7.3.4 Reliability 116
7.3.5 Additional Service Value 116
7.3.6 Additional Technical Value 117
7.4 Benchmark of Different SMA Valve Concepts 118
7.5 Service Concepts for SMA Valves 118
References 119
Chapter 8: Design of Thermal SMA Valves 121
8.1 SMA Springs: Thermal Actuator Elements 121
8.2 Dimensioning of SMA Springs for Thermal SMA Valves 124
8.2.1 Step 1: Determination of Requirements 125
8.2.2 Step 2: Determination of Material Properties 125
8.2.3 Step 3: Definition of Constants 127
8.2.4 Step 4: Predefinition of Spring Index w 129
8.2.5 Step 5: Calculation of Stress Correction Factor k 130
8.2.6 Step 6: Shear Strain in the High-Temperature Phase 131
8.2.7 Step 7: Shear Stress in the Low-Temperature Phase 131
8.2.8 Step 8: Shear Stress Damage as a Result of Pre-Strain of the Bias Spring 132
8.2.9 Step 9: Usable Shear Stress During Actuation Phase 132
8.2.10 Step 10: Calculation of Wire Diameter 133
8.2.11 Step 11: Calculation of Number of Active Winding 133
8.2.12 Step 11: Calculation of Actuator Length in the High- and in the Low-Temperature Phase 133
8.2.13 Step 12: Final Actuator Geometry 134
References 135
Chapter 9: Design of Electrical SMA Valves 137
9.1 Electrical SMA Actuators: Fundamental Effects and System Design 137
9.2 Hindrances During the Development of SMA Valve Drives 138
9.3 SMA Wires as Electrical Actuators 139
9.4 Fast-Track Calculation of SMA Straight Wire Mechanical Design 142
9.5 Numerical Simulation of SMA Wire Actuators 144
9.6 Application Characteristics of Electric SMA Actuator Systems 146
9.6.1 Operating Temperatures 146
9.6.2 Electrical Activation 148
9.7 Functional Structures of Electrical SMA Drives 150
9.8 Component Structure of Electrical SMA Valve Systems 151
9.8.1 Stroke Limiters 154
9.8.2 Stress Protection 155
9.8.3 Connection of SMA Wires 155
References 157
Chapter 10: Methodology for SMA Valve Development Illustrated by the Development of a SMA Pinch Valve 159
10.1 Motivation for a SMA Development Methodology 159
10.2 Pinch Valve as an Example of a Methodical Development Process 161
10.3 Methodology for SMA System Development 163
10.4 System Design of SMA-Based Pinch Valve 165
10.4.1 Step 1: Preliminary Feasibility Assessment 165
10.4.1.1 Fulfilled Requirements 166
10.4.1.2 Partially Fulfilled Requirements 167
10.4.1.3 Unfulfilled Requirements 168
10.4.1.4 Requirement Classification for Pinch Valve 168
10.4.2 Step 2: Functional Structure 169
10.4.3 Step 3: Mode of Operation 169
10.4.4 Step 4: Mode of Construction 173
10.4.5 Step 5: Type of Control 178
10.4.6 Step 6: Active Structure and Solution Concept 181
10.5 Domain-Based Design of SMA-Based Pinch Valve 181
10.5.1 Design of Material Mechanics 182
10.5.2 Design of Actuator Mechanics 182
10.5.3 Design of Electronic and Information Processing 184
10.6 System Integration of SMA-Based Pinch Valve 184
References 186
Chapter 11: Examples of Shape Memory Alloy Valves on Market 187
11.1 Thermal Shape Memory Alloy Valves in Buildings and Vehicles 187
11.1.1 FireChek: Heat-Activated Pneumatic Shut-Off Valve 187
11.1.2 SMV-Control: Valve for Underfloor Heating Regulation 189
11.1.3 SMV-Visco: Valve for Compensation of Viscosity Changes 190
11.1.4 Thermostat Combi Valve for Auxiliary Heaters 191
11.1.5 Water Temperature Control in Mixing Faucets 192
11.1.6 Thermal Shape Memory Alloy Valves in Household Equipment 193
11.2 Electrical Shape Memory Alloy Valves 194
11.2.1 Pneumatic Valve for Lumber Support Systems in Vehicle Seats 194
11.2.2 Small Diaphragm Valve 195
11.2.3 Small Multipurpose Air Valve 196
References 197
Chapter 12: Future Perspectives of SMA and SMA Valves 198
12.1 Future Perspectives of Shape Memory Alloy Technology 198
12.1.1 Compensation of Thermal Effects by Adaptive Resetting 198
12.1.1.1 Example of an Actuator System 200
12.1.2 Compensation of Functional Fatigue by Refresh Annealing 200
12.1.3 Functional Integrated Actuator Systems 202
12.1.3.1 Basics of Local Configuration 203
Local Configuration Via Heat Treatment 203
Local Configuration Via Coating 203
Local Configuration Via Structuring 204
Local Configuration Via Alloy Composition 204
12.1.3.2 Local Configuration of Actuator Elements 204
Example of a Locally Coated Thin-Layer Actuator 204
Examples of a Locally Heat-Treated Actuators 205
12.1.3.3 Functional Integrated Actuator 206
12.1.3.4 Procedure for Functional Integration 207
12.1.4 Introduction in Sensing Effects of Pseudoelastic SMA 208
12.2 Future Perspectives of Shape Memory Alloy Valves 209
12.2.1 Shape Memory Alloy Microvalves 209
12.2.2 Exemplary Concepts for New SMA Valves 211
12.2.2.1 Reconfigurable SMA Valve 211
12.2.2.2 Rapid-Manufactured SMA Valve 212
References 214
Index 215

Erscheint lt. Verlag 7.9.2015
Zusatzinfo IX, 214 p. 159 illus., 87 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Functional Materials • Intelligent Materials • Intrinsic Sensor Functions • Shape Memory Actuators • Shape memory alloys • Shape Memory Drives • Shape Memory Technology • Shape Memory Valves
ISBN-10 3-319-19081-4 / 3319190814
ISBN-13 978-3-319-19081-5 / 9783319190815
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
CHF 68,35
Grundlagen – Use-Cases – unternehmenseigene KI-Journey

von Ralf T. Kreutzer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 41,95