Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Modern Manufacturing Engineering (eBook)

J. Paulo Davim (Herausgeber)

eBook Download: PDF
2015 | 2015
VIII, 321 Seiten
Springer International Publishing (Verlag)
978-3-319-20152-8 (ISBN)

Lese- und Medienproben

Modern Manufacturing Engineering -
Systemvoraussetzungen
181,89 inkl. MwSt
(CHF 177,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

Preface 6
Contents 8
1 Submicro and Nanostructuring of Materials by Severe Plastic Deformation 10
Abstract 10
1.1 Introduction 10
1.2 Severe Plastic Deformation as a Feasible Way to Achieve Grain Refinement 13
1.3 Addressing Common Concerns: Multi-pass, Materials Used, and Strain Achieved 17
1.4 Theoretical Foundations of ECAP 24
1.4.1 Deformation Mode 24
1.4.2 Pure and Simple Shear 25
1.4.3 Structure Development 27
1.5 Extrusion-Cutting 32
1.5.1 General Idea of the Process 32
1.5.2 Shear Strain 34
1.5.3 Detailed Analysis 35
1.5.3.1 Zone 1----Unconstrained Cutting 36
1.5.3.2 Zone 2----Extrusion-Cutting 38
1.5.3.3 Zone 3----Extrusion 39
1.5.4 Large Strain ExtrusionMachining (LSEM) 40
References 46
2 Cross Rolling: A Metal Forming Process 50
Abstract 50
2.1 Introduction 50
2.1.1 Cross rolling 52
2.1.1.1 Applications 53
2.1.1.2 Limitations 53
2.1.2 Effects of Cross Rolling 54
2.1.2.1 Crystallographic Texture 54
2.1.2.2 Plastic Anisotropy 54
2.1.2.3 Residual Stress 55
2.2 Texture or Preferred Orientation 56
2.2.1 Reference System 57
2.2.2 Euler Angle 57
2.2.3 Representation of Texture 58
2.2.3.1 Pole Figure 58
2.2.3.2 Inverse Pole Figure 59
2.2.3.3 Orientation Distribution Function 60
2.2.4 Ideal Orientations 61
2.2.5 Prediction of Texture 61
2.3 Cross Rolling Texture: An Overview 62
2.3.1 Experimental Observation 62
2.3.1.1 Body Centered and Face Centered Cubic Materials 63
2.3.1.2 Hexagonal Close Packed Materials 65
2.3.2 Prediction of Cross Rolling Texture 66
2.4 Case Study 67
2.4.1 Rolling 68
2.4.2 Tensile Test 68
2.4.2.1 Strength 68
2.4.2.2 Anisotropy 70
2.5 Conclusion 71
References 71
3 Finite Element Method in Machining Processes: A Review 74
Abstract 74
3.1 Introduction 75
3.2 Finite Element Method in Machining 76
3.2.1 FEM Types 78
3.3 Material and Tool Modelling 80
3.3.1 Johnson--Cook Model 80
3.3.2 Zerilli--Armstrong Model 83
3.3.3 Others Models 84
3.3.4 Tool 85
3.4 Meshing and Re-meshing 85
3.5 Boundary Conditions 87
3.5.1 Chip Separation 88
3.6 Friction 89
3.7 Examples of Employments 93
3.8 FEM in Micromachining 96
3.8.1 MaterialModelling 98
3.8.2 Friction 99
3.9 Remarks 100
Acknowledgments 100
References 101
4 Machining and Machining Modeling of Metal Matrix Composites---A Review 107
Abstract 107
4.1 Introduction 107
4.2 Conventional Machining Processes of MMCs 108
4.2.1 Loads During Machining of MMCs 109
4.2.2 Tool Wear Mechanisms 111
4.2.3 Machinability 112
4.2.3.1 Turning of MMCs 113
4.2.3.2 Parameters of Turning and Tool Wear 114
4.2.3.3 Parameters of Turning and Surface Quality 115
4.2.3.4 Proper Tool Selection 115
4.2.3.5 Hybrid Turning Processes 116
4.2.4 Milling of MMCs 117
4.2.4.1 Parameters of Milling and Tool Wear 117
4.2.4.2 Parameters of Milling and Surface Quality 118
4.2.4.3 Proper Tool Selection 118
4.2.5 Drilling of MMCs 119
4.2.5.1 Parameters of Drilling and Tool Wear 119
4.2.5.2 Parameters of Drilling and Surface Quality 120
4.2.5.3 Proper Tool Selection 120
4.2.6 Other Machining Processes 121
4.2.6.1 Tapping 121
4.2.6.2 Grinding 121
4.2.6.3 Honing 122
4.2.6.4 Sawing 122
4.2.7 Micro-machining of MMCs 123
4.3 Nonconventional Machining Processes of MMCs 123
4.3.1 Electrical Discharge Machining 124
4.3.2 Abrasive Water Jet Machining 125
4.3.3 Laser Beam Machining 126
4.3.4 Electrochemical Machining 127
4.3.5 Ultrasonic Machining 128
4.4 Machining Modelling of MMCs 128
4.4.1 Analytic Models for MMC Machining Processes 129
4.4.2 Numerical Macro and Microscale Models 131
4.4.2.1 General Modelling Methods 132
4.4.2.2 Geometric Modelling Aspects 133
4.4.2.3 Modelling Parameters 134
4.4.2.4 Material Models and Properties 135
4.4.2.5 Boundary Element Method Simulations 135
4.4.3 MD Models 136
4.4.4 Soft Computing Models 138
4.5 Conclusions 141
References 141
5 Intelligent CNC Tool Path Optimization for Sculptured Surface Machining Through a Virus-Evolutionary Genetic Algorithm 150
Abstract 150
5.1 Introduction 151
5.2 Problem Statement and Research Objectives 153
5.3 Sculptured Surface Machining--SSM 155
5.3.1 Technologies Employed 155
5.3.2 3-Axis Milling 155
5.3.3 5-Axis Milling 156
5.3.3.1 Parametric Computer-Aided Design -CAD 156
5.3.3.2 Tool Path Planning for CNC Programming---CNC/CAM 157
5.3.3.3 NC Verification 158
5.3.4 Sculptured Surface Machining Error Representation 159
5.3.4.1 Machining Error Modelling 160
5.3.4.2 Discretization Step Control via CL Point Projections 162
5.3.4.3 3-Axis SSM 162
5.3.4.4 5-Axis SSM 164
5.3.4.5 Scallop Height Control via Effective Radii for Cutting Tools 165
5.3.4.6 3-Axis SSM 166
5.3.4.7 5-Axis SSM 166
5.4 Sculptured Surface Tool Path Optimization 167
5.4.1 Objective Function Formulation 167
5.4.2 Normalization 168
5.4.3 Constraints 169
5.4.4 Biological Aspects of Virus-Evolution Theory 169
5.4.5 Virus-Evolutionary Genetic Algorithm Architecture 171
5.4.6 Virus Operators 172
5.5 Manufacturing Software Integration 174
5.5.1 Automated Framework 174
5.6 High-Precision Cutting Experiments on Sculptured Surfaces 175
5.7 3-Axis SSM Case 176
5.8 5-Axis SSM Case 178
5.9 Discussion of Results 181
References 183
6 Friction Stir Welding: Scope and Recent Development 185
Abstract 185
6.1 Background on Development of FSW 185
6.2 Introduction to FSW 186
6.2.1 Pros and Cons of FSW Process 188
6.2.2 Application of FSW Process 188
6.2.3 Terminology in FSW and Its Significance 189
6.2.4 Process Variables and Their Effects 190
6.2.5 Mechanism of Material Flow 192
6.2.6 Defects in FSW 192
6.3 Recent Experimental Advancement in FSW 193
6.3.1 Multi-Pass Friction Stir Welding/Processing 194
6.3.2 Advantages of Contra-Rotating FSW Tools 196
6.3.3 Case Study on Twin-Tool 196
6.3.3.1 Twin-Tool Setup 196
6.3.3.2 Experimental Plan 196
6.4 Ultrasonic Assisted FSW 198
6.4.1 Introduction 198
6.4.2 Ultrasonic Machining 200
6.4.3 Ultrasonic Welding 201
6.4.4 Ultrasonic Assisted FSW 202
6.4.4.1 Literature Review 202
6.4.4.2 Components of Ultrasonic System 203
6.4.5 Design and Fabrication of Ultrasonic System 204
6.4.5.1 Design of Horn 204
6.4.5.2 Roller Bearing 205
6.4.5.3 Ultrasonic Assembly Mounting 206
6.5 Forming of Friction Stir Welded Blanks 207
6.5.1 Techniques to Improve Formability of TFSWBs 211
6.5.1.1 Post-weld Heat Treatment 211
6.5.1.2 Hydroforming 211
6.5.1.3 Incremental Forming 212
6.5.1.4 Use of Conical and Tractrix Dies in Deep Drawing 212
6.5.2 Forming of Dissimilar Materials TFSWBs: A Case Study 212
6.6 Computational Methods Applied to FSW 215
6.6.1 Analytical Model 215
6.6.2 Numerical Analysis 216
6.6.2.1 Basic Steps in FEM 217
6.6.3 Modeling Techniques 218
6.6.3.1 Type of Approach 219
6.6.3.2 Literature on FE Simulation of FSW 220
Lagrangian and ALE Approaches 220
Eulerian Approach 221
6.6.4 Methodology to Simulate FSW 222
6.6.4.1 Geometric Modeling and Boundary Conditions of FSW 222
6.6.4.2 Material Constitutive Relation 224
6.6.4.3 Friction Model 225
6.6.4.4 Thermal Model 225
6.6.4.5 FEM Formulation and Governing Equations 226
6.6.5 Simulation Results 226
6.6.5.1 Complexity in Simulation of FSW 227
6.6.5.2 Temperature Distribution 227
6.6.5.3 Strain Distribution 227
6.7 Conclusion 229
References 230
7 Innovative Joining Technologies Based on Tube Forming 236
Abstract 236
7.1 Introduction 236
7.2 Materials and Methods 238
7.2.1 Mechanical Characterization 239
7.2.2 The Experimental Workplan 239
7.3 Finite Element Modelling 242
7.4 Results and Discussion 243
7.4.1 Inclined Connections of Tubes 244
7.4.2 End-to-End Joining of Tubes 247
7.4.3 Inclined Connections of Tubes to Sheets 249
7.5 Conclusions 252
Acknowledgments 253
References 253
8 Lean Manufacturing 254
Abstract 254
8.1 Introduction 254
8.2 Various Sources of Waste in Manufacturing Systems 260
8.2.1 Transportation 261
8.2.2 Inventory 262
8.2.3 Motion 264
8.2.4 Waiting 265
8.2.5 Overprocessing 266
8.2.6 Overproduction 267
8.2.7 Defects and Rework 268
8.2.8 Skills/Poor Utilization of Human Resources 269
8.3 Impact of Lean Manufacturing on System Performance 270
8.4 Conclusion 272
References 273
9 Object-Based Final-Year Project: Designing and Manufacturing a Quick Stop Device 275
Abstract 275
9.1 Introduction 275
9.2 Object: `Quick Stop' Devices 277
9.3 Background Information 277
9.4 Design Consideration 278
9.5 Design 1: Orthogonal Movement 1 (X-Y Axis) 282
9.5.1 Design Components 282
9.5.1.1 Tool Housing Body 282
9.5.1.2 Cutting Tool 283
9.5.1.3 Clamp and Spring 283
9.5.2 Manufacturing and Assembly 284
9.5.3 Testing the Quick Stop Tool 286
9.5.4 Outcome 286
9.6 Design 2: Orthogonal Movement 2 (X-Y Axis) 287
9.6.1 Design Components 287
9.6.1.1 Tool Body Housing 287
9.6.1.2 Cutting Tool 288
9.6.1.3 Stopper Mechanism 288
9.6.2 Manufacturing and Assembly 288
9.6.3 Testing the Quick Stop Tool 289
9.6.4 Outcome 289
9.7 Design 3: Orthogonal Movement (Y-Z Axis) 290
9.7.1 Component Designs 291
9.7.1.1 Tool Body Housing 291
9.7.1.2 The Cutting Tool 291
9.7.1.3 Stopper Mechanism 292
9.7.2 Assembly and Manufacturing 293
9.7.3 Testing the Quick Stop Tool (Design 3) 294
9.7.4 Outcome 294
9.8 Design 4: Retracting Action (X-Axis) 294
9.8.1 Component Design 295
9.8.1.1 Tool Body Housing 295
9.8.1.2 Push and Locking Mechanism 295
9.8.1.3 V Cutting Tool 296
9.8.2 Manufacturing and Assembly 296
9.8.3 Testing of the Quick Stop Tool (Design 4) 297
9.8.4 Outcome 297
9.9 Cutoff tool design 297
9.9.1 Testing the Quick Stop with Cutoff Tool (Design 3) 299
9.9.2 Outcome 299
9.10 Discussions 300
9.11 Conclusions 302
References 303
10 Quantifying Quality of Learning During Teaching an Undergraduate Unit: Manufacturing Processes 304
Abstract 304
10.1 Introduction 304
10.2 Learning outcomes 306
10.3 Learning Outcomes, examination questions and Student Response 306
10.3.1 Explain and Apply the Manufacturing Processes of Engineering Materials and Components 306
10.3.2 Apply the Principles of Primary and Secondary Forming Processes, and Specialized Fabrication Techniques 310
10.3.3 Analyse and Select the Appropriate Manufacturing Methods for Specific Types of Components 314
10.4 Students' Learning 319
10.5 Conclusions 320
References 320
Index 321

Erscheint lt. Verlag 19.6.2015
Reihe/Serie Materials Forming, Machining and Tribology
Materials Forming, Machining and Tribology
Zusatzinfo VIII, 321 p. 171 illus., 17 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Wirtschaft
Schlagworte abrasive machining processes • Joining Manufacturing Processes • Lean Manufacturing • Machining and Forming • Manufacturing Processes • Materials Processes • sustainable manufacturing
ISBN-10 3-319-20152-2 / 3319201522
ISBN-13 978-3-319-20152-8 / 9783319201528
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen - Planung - Montage

von Wilfried Franke; Bernd Platzer

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95