Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Analyzing Spatial Models of Choice and Judgment with R - Ryan Bakker, Royce Carroll, Christopher Hare, Keith T. Poole, Howard Rosenthal

Analyzing Spatial Models of Choice and Judgment with R

Buch | Hardcover
356 Seiten
2014
Crc Press Inc (Verlag)
978-1-4665-1715-8 (ISBN)
CHF 104,70 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Modern Methods for Evaluating Your Social Science Data





With recent advances in computing power and the widespread availability of political choice data, such as legislative roll call and public opinion survey data, the empirical estimation of spatial models has never been easier or more popular. Analyzing Spatial Models of Choice and Judgment with R demonstrates how to estimate and interpret spatial models using a variety of methods with the popular, open-source programming language R.





Requiring basic knowledge of R, the book enables researchers to apply the methods to their own data. Also suitable for expert methodologists, it presents the latest methods for modeling the distances between points—not the locations of the points themselves. This distinction has important implications for understanding scaling results, particularly how uncertainty spreads throughout the entire point configuration and how results are identified.





In each chapter, the authors explain the basic theory behind the spatial model, then illustrate the estimation techniques and explore their historical development, and finally discuss the advantages and limitations of the methods. They also demonstrate step by step how to implement each method using R with actual datasets. The R code and datasets are available on the book’s website.

Introduction
The Spatial Theory of Voting
Summary of Data Types Analyzed by Spatial Voting Models





The Basics
Data Basics in R
Reading Data in R
Writing Data in R





Analyzing Issue Scales
Aldrich-McKelvey Scaling
Basic Space Scaling: The blackbox Function
Basic Space Scaling: The blackbox transpose Function
Anchoring Vignettes





Analyzing Similarities and Dissimilarities Data
Classical Metric Multidimensional Scaling
Non-Metric Multidimensional Scaling
Bayesian Multidimensional Scaling
Individual Differences Multidimensional Scaling





Unfolding Analysis of Rating Scale Data
Solving the Thermometers Problem
Metric Unfolding Using the MLSMU6 Procedure
Metric Unfolding Using Majorization (SMACOF)
Bayesian Multidimensional Unfolding





Unfolding Analysis of Binary Choice Data
The Geometry of Legislative Voting
Reading Legislative Roll Call Data into R with the pscl Package
Parametric Methods—NOMINATE
MCMC or a-NOMINATE
Parametric Methods—Bayesian Item Response Theory
Nonparametric Methods—Optimal Classification





Advanced Topics
Using Latent Estimates as Variables
Ordinal and Dynamic IRT Models





Conclusion and Exercises appear at the end of each chapter.

Reihe/Serie Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences
Zusatzinfo 13 Tables, black and white; 81 Illustrations, black and white
Verlagsort Bosa Roca
Sprache englisch
Maße 156 x 235 mm
Gewicht 680 g
Themenwelt Geisteswissenschaften Psychologie
Mathematik / Informatik Mathematik
Sozialwissenschaften Soziologie Empirische Sozialforschung
Wirtschaft Volkswirtschaftslehre
ISBN-10 1-4665-1715-8 / 1466517158
ISBN-13 978-1-4665-1715-8 / 9781466517158
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Arbeitsbuch

von Aglaja Przyborski; Monika Wohlrab-Sahr

Buch | Softcover (2021)
De Gruyter Oldenbourg (Verlag)
CHF 48,90