Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Pricing Portfolio Credit Derivatives by Means of Evolutionary Algorithms (eBook)

(Autor)

eBook Download: PDF
2008 | 2008
XXVII, 160 Seiten
Betriebswirtschaftlicher Verlag Gabler
9783834997029 (ISBN)

Lese- und Medienproben

Pricing Portfolio Credit Derivatives by Means of Evolutionary Algorithms - Svenja Hager
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Svenja Hager aims at pricing non-standard illiquid portfolio credit derivatives which are related to standard CDO tranches with the same underlying portfolio of obligors. Instead of assuming a homogeneous dependence structure between the default times of different obligors, as it is assumed in the standard market model, the author focuses on the use of heterogeneous correlation structures.

Dr. Svenja Hager promovierte bei Prof. Dr.-Ing. Rainer Schöbel am Lehrstuhl für Betriebswirtschaftslehre, insbesondere Betriebliche Finanzwirtschaft, der Universität Tübingen. Sie ist als Kredit- und Marktrisiko-Expertin tätig.

Dr. Svenja Hager promovierte bei Prof. Dr.-Ing. Rainer Schöbel am Lehrstuhl für Betriebswirtschaftslehre, insbesondere Betriebliche Finanzwirtschaft, der Universität Tübingen. Sie ist als Kredit- und Marktrisiko-Expertin tätig.

Foreword 6
Acknowledgements 7
Table of Contents 8
List of Tables 13
List of Figures 14
List of Notations 17
Chapter 1 Introduction 22
Chapter 2 Collateralized Debt Obligations: Structure and Valuation 27
2.1 Introduction 27
2.2 Credit Risk Transfer Instruments 29
2.3 Credit Risk Modeling 38
2.4 Valuation of CDOs: Literature 56
Chapter 3 Explaining the Implied Correlation Smile 60
3.1 Introduction 60
3.2 Sensitivity of the Tranche Price to the Level of Correlation 61
3.3 The Implied Tranche Correlation 63
3.4 The Implied Correlation Smile 64
3.5 The Implied Base Correlation 66
3.6 Evolution of the Implied Correlation Smile 68
3.7 Modeling the Correlation Smile: Literature 75
3.8 Heterogeneous Dependence Structures 77
3.9 Conclusion 84
Chapter 4 Optimization by Means of Evolutionary Algorithms 91
4.1 Introduction 91
4.2 Evolutionary Algorithms 92
4.3 Notation 95
4.4 Evolutionary Operators 98
4.5 Basic Algorithms 101
4.6 Parallel Algorithms 104
4.7 Evolutionary Algorithms in Finance: Literature 106
Chapter 5 Evolutionary Algorithms in Finance: Deriving the Dependence Structure 108
5.1 Introduction 108
5.2 The Implied Correlation Structure 109
5.3 The Optimization Problem 110
5.4 Description of the Genotypes 111
5.5 A Systematic Approach to Describe the Dependence Structure 118
5.6 Conclusion 124
Chapter 6 Experimental Results 125
6.1 Introduction 125
6.2 Solution Evaluation 126
6.3 Performance Comparison: Basic Strategies 129
6.4 Performance Comparison: More Advanced Algorithms 136
6.5 Implementation of a Parallel System 151
6.6 Performance Comparison: Parallel Algorithms 152
6.7 Deriving the Dependence Structure From Market Data 154
6.8 Conclusion 157
Chapter 7 Summary and Outlook 159
References 162

Chapter 4 Optimization by Means of Evolutionary Algorithms (S. 73-74)

4.1 Introduction

In the preceding Chapter 3, we presented a possible explanation for the inability of the standard market approach to fit quoted CDO tranche prices and to model the correlation smile. We suggested overcoming the deficiency of the standard market model by means of non-flat dependence structures. In the subsequent Chapter 5, we will explain how a correlation matrix can be derived from observed tranche spreads such that all tranche spreads of the CDO structure are reproduced simultaneously. This idea can be represented in the form of an optimization problem. This Chapter 4 addresses optimization algorithms. Life in general and the domain of finance in particular confront us with many opportunities for optimization. Optimization is the process of searching for the optimal solution in a set of candidate solutions, i.e. the search space.

Optimization theory is a branch of mathematics which encompasses many di.erent methodologies of minimization and maximization. In this chapter we represent optimization problems as maximization problems, unless mentioned otherwise. The function to be maximized is denoted as objective function. Optimization methods are similar to approaches to root .nding, but generally they are more intricate. The idea behind root finding is to search for the zeros of a function, while the idea behind optimization is to search for the zeros of the objective function’s derivative. However, often the derivative does not exist or is hard to find.

Another di.culty with optimization is to determine whether a given optimum is the global or only a local optimum. There are many di.erent types of optimization problems: they can be one- or multidimensional, static or dynamic, discrete or continuous, constrained or unconstrained. Sometimes even the objective function is unknown. In line with the high number of different optimization problems, many di.erent standard approaches have been developed to finding an optimal solution. Standard approaches are methods that are developed for a certain class of problems (though not speci.cally designed for an actual problem) and that do not use domain-specific knowledge in the search procedure. In case of a discrete search space, the most simple optimization method is the total enumeration of all possible solutions.

Needless to say, this approach .nds the global optimum but is very ineficient especially when the problem size increases. Other approaches like linear or quadratic programming utilize special properties of the objective function. Possible solution techniques for nonlinear programming problems are local search procedures like the gradient-ascent method, provided that the objective function is real-valued and di.erentiable.

Most local search methods take the approach of heading uphill from a certain starting point. They di.er in deciding in what direction to go and how far to move. If the search space is multi-modal (i.e. it contains several local extrema), the local search methods will all run the risk of being stuck in a local optimum. But even if the objective function is not di.erentiable or if the search space is multi-modal, there will still be some standard approaches that deal with these kinds of problems.

Erscheint lt. Verlag 8.9.2008
Vorwort Prof. Dr.-Ing. Rainer Schöbel
Zusatzinfo XXVII, 160 p.
Verlagsort Wiesbaden
Sprache englisch
Themenwelt Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Wirtschaft Volkswirtschaftslehre
Schlagworte algorithms • Collateralized Debt Obligations • Correlation matrix • Correlation Structure • credit derivatives • credit risk • Finance
ISBN-13 9783834997029 / 9783834997029
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Werner Kroeber-Riel; Andrea Gröppel-Klein

eBook Download (2025)
Vahlen (Verlag)
CHF 46,85
Warum etablierte Unternehmen den Wettbewerb um bahnbrechende …

von Clayton M. Christensen

eBook Download (2025)
Vahlen (Verlag)
CHF 27,35
Warum etablierte Unternehmen den Wettbewerb um bahnbrechende …

von Clayton M. Christensen

eBook Download (2025)
Vahlen (Verlag)
CHF 27,35