Principles of Tribology (eBook)
John Wiley & Sons (Verlag)
978-1-119-21492-2 (ISBN)
Updated to include the timely and important topics of MEMS and rolling friction, Principles of Tribology is a compilation of current developments from tribology research, coupled with tribology fundamentals and applications. Essential topics include lubrication theory, lubrication design, friction mechanism, wear mechanism, friction control, and their applications. Besides classical tribology content, the book also covers intersecting research areas of tribology, as well as the regularities and characteristics of the tribological phenomena in practice. Furthermore, it presents the basic theory, numerical analysis methods and experimental measuring techniques of tribology as well as their application in engineering.
- Newly expanded and updated to include new tribological material on MEMS and green tribology, its key concepts and applications
- Systematically brings the reader through fundamental theories, basic mechanisms through to the latest research
- Emphasizes practical tribological phenomena, supported by numerical analysis and experimental measurement techniques
- Discusses nano-tribology, thin film lubrication and its applications, topics which are growing in importance
A comprehensive look at the fundamentals and latest research, this second edition of Principles of Tribology is an essential textbook for graduate and senior undergraduate students specializing in tribology and related mechanical engineering fields.
SHIZHU WEN, Tsinghua University, China
PING HUANG, South China University of Technology, China
Updated to include the timely and important topics of MEMS and rolling friction, Principles of Tribology is a compilation of current developments from tribology research, coupled with tribology fundamentals and applications. Essential topics include lubrication theory, lubrication design, friction mechanism, wear mechanism, friction control, and their applications. Besides classical tribology content, the book also covers intersecting research areas of tribology, as well as the regularities and characteristics of the tribological phenomena in practice. Furthermore, it presents the basic theory, numerical analysis methods and experimental measuring techniques of tribology as well as their application in engineering. Newly expanded and updated to include new tribological material on MEMS and green tribology, its key concepts and applications Systematically brings the reader through fundamental theories, basic mechanisms through to the latest research Emphasizes practical tribological phenomena, supported by numerical analysis and experimental measurement techniques Discusses nano-tribology, thin film lubrication and its applications, topics which are growing in importance A comprehensive look at the fundamentals and latest research, this second edition of Principles of Tribology is an essential textbook for graduate and senior undergraduate students specializing in tribology and related mechanical engineering fields.
SHIZHU WEN, Tsinghua University, China PING HUANG, South China University of Technology, China
Cover 1
Title Page 5
Copyright 6
Contents 7
About the Authors 23
Second Edition Preface 25
Preface 27
Introduction 29
Part I Lubrication Theory 31
Chapter 1 Properties of Lubricants 33
1.1 Lubrication States 33
1.2 Density of Lubricant 35
1.3 Viscosity of Lubricant 37
1.3.1 Dynamic Viscosity and Kinematic Viscosity 37
1.3.1.1 Dynamic Viscosity 37
1.3.1.2 Kinematic Viscosity 38
1.3.2 Relationship between Viscosity and Temperature 39
1.3.2.1 Viscosity-Temperature Equations 39
1.3.2.2 ASTM Viscosity-Temperature Diagram 39
1.3.2.3 Viscosity Index 40
1.3.3 Relationship between Viscosity and Pressure 40
1.3.3.1 Relationships between Viscosity, Temperature and Pressure 41
1.4 Non-Newtonian Behaviors 42
1.4.1 Ree-Eyring Constitutive Equation 42
1.4.2 Visco-Plastic Constitutive Equation 43
1.4.3 Circular Constitutive Equation 43
1.4.4 Temperature-Dependent Constitutive Equation 43
1.4.5 Visco-Elastic Constitutive Equation 44
1.4.6 Nonlinear Visco-Elastic Constitutive Equation 44
1.4.7 A Simple Visco-Elastic Constitutive Equation 45
1.4.7.1 Pseudoplasticity 46
1.4.7.2 Thixotropy 46
1.5 Wettability of Lubricants 46
1.5.1 Wetting and Contact Angle 47
1.5.2 Surface Tension 47
1.6 Measurement and Conversion of Viscosity 49
1.6.1 Rotary Viscometer 49
1.6.2 Off-Body Viscometer 49
1.6.3 Capillary Viscometer 49
References 51
Chapter 2 Basic Theories of Hydrodynamic Lubrication 52
2.1 Reynolds Equation 52
2.1.1 Basic Assumptions 52
2.1.2 Derivation of the Reynolds Equation 53
2.1.2.1 Force Balance 53
2.1.2.2 General Reynolds Equation 55
2.2 Hydrodynamic Lubrication 56
2.2.1 Mechanism of Hydrodynamic Lubrication 56
2.2.2 Boundary Conditions and Initial Conditions of the Reynolds Equation 57
2.2.2.1 Boundary Conditions 57
2.2.2.2 Initial Conditions 58
2.2.3 Calculation of Hydrodynamic Lubrication 58
2.2.3.1 Load-Carrying Capacity W 58
2.2.3.2 Friction Force F 58
2.2.3.3 Lubricant Flow Q 59
2.3 Elastic Contact Problems 59
2.3.1 Line Contact 59
2.3.1.1 Geometry and Elasticity Simulations 59
2.3.1.2 Contact Area and Stress 60
2.3.2 Point Contact 61
2.3.2.1 Geometric Relationship 61
2.3.2.2 Contact Area and Stress 62
2.4 Entrance Analysis of EHL 64
2.4.1 Elastic Deformation of Line Contacts 65
2.4.2 Reynolds Equation Considering the Effect of Pressure-Viscosity 65
2.4.3 Discussion 66
2.4.4 Grubin Film Thickness Formula 67
2.5 Grease Lubrication 68
References 70
Chapter 3 Numerical Methods of Lubrication Calculation 71
3.1 Numerical Methods of Lubrication 72
3.1.1 Finite Difference Method 72
3.1.1.1 Hydrostatic Lubrication 74
3.1.1.2 Hydrodynamic Lubrication 74
3.1.2 Finite Element Method and Boundary Element Method 78
3.1.2.1 Finite Element Method (FEM) 78
3.1.2.2 Boundary Element Method 79
3.1.3 Numerical Techniques 81
3.1.3.1 Parameter Transformation 81
3.1.3.2 Numerical Integration 81
3.1.3.3 Empirical Formula 83
3.1.3.4 Sudden Thickness Change 83
3.2 Numerical Solution of the Energy Equation 84
3.2.1 Conduction and Convection of Heat 85
3.2.1.1 Conduction Heat Hd 85
3.2.1.2 Convection Heat Hv 85
3.2.2 Energy Equation 86
3.2.3 Numerical Solution of Energy Equation 89
3.3 Numerical Solution of Elastohydrodynamic Lubrication 90
3.3.1 EHL Numerical Solution of Line Contacts 90
3.3.1.1 Basic Equations 90
3.3.1.2 Solution of the Reynolds Equation 92
3.3.1.3 Calculation of Elastic Deformation 92
3.3.1.4 Dowson-Higginson Film Thickness Formula of Line Contact EHL 94
3.3.2 EHL Numerical Solution of Point Contacts 94
3.3.2.1 The Reynolds Equation 95
3.3.2.2 Elastic Deformation Equation 96
3.3.2.3 Hamrock-Dowson Film Thickness Formula of Point Contact EHL 96
3.4 Multi-Grid Method for Solving EHL Problems 98
3.4.1 Basic Principles of Multi-Grid Method 98
3.4.1.1 Grid Structure 98
3.4.1.2 Discrete Equation 98
3.4.1.3 Transformation 99
3.4.2 Nonlinear Full Approximation Scheme for the Multi-Grid Method 99
3.4.3 V and W Iterations 101
3.4.4 Multi-Grid Solution of EHL Problems 101
3.4.4.1 Iteration Methods 101
3.4.4.2 Iterative Division 102
3.4.4.3 Relaxation Factors 103
3.4.4.4 Numbers of Iteration Times 103
3.4.5 Multi-Grid Integration Method 103
3.4.5.1 Transfer Pressure Downwards 104
3.4.5.2 Transfer Integral Coefficients Downwards 104
3.4.5.3 Integration on the Coarser Mesh 104
3.4.5.4 Transfer Back Integration Results 105
3.4.5.5 Modification on the Finer Mesh 105
References 106
Chapter 4 Lubrication Design of Typical Mechanical Elements 108
4.1 Slider and Thrust Bearings 108
4.1.1 Basic Equations 108
4.1.1.1 Reynolds Equation 108
4.1.1.2 Boundary Conditions 108
4.1.1.3 Continuous Conditions 109
4.1.2 Solutions of Slider Lubrication 109
4.2 Journal Bearings 111
4.2.1 Axis Position and Clearance Shape 111
4.2.2 Infinitely Narrow Bearings 112
4.2.2.1 Load-Carrying Capacity 113
4.2.2.2 Deviation Angle and Axis Track 113
4.2.2.3 Flow 114
4.2.2.4 Frictional Force and Friction Coefficient 114
4.2.3 Infinitely Wide Bearings 115
4.3 Hydrostatic Bearings 118
4.3.1 Hydrostatic Thrust Plate 119
4.3.2 Hydrostatic Journal Bearings 120
4.3.3 Bearing Stiffness and Throttle 120
4.3.3.1 Constant Flow Pump 121
4.3.3.2 Capillary Throttle 121
4.3.3.3 Thin-Walled Orifice Throttle 122
4.4 Squeeze Bearings 122
4.4.1 Rectangular Plate Squeeze 123
4.4.2 Disc Squeeze 124
4.4.3 Journal Bearing Squeeze 124
4.5 Dynamic Bearings 126
4.5.1 Reynolds Equation of Dynamic Journal Bearings 126
4.5.2 Simple Dynamic Bearing Calculation 128
4.5.2.1 A Sudden Load 128
4.5.2.2 Rotating Load 129
4.5.3 General Dynamic Bearings 130
4.5.3.1 Infinitely Narrow Bearings 130
4.5.3.2 Superimposition Method of Pressures 131
4.5.3.3 Superimposition Method of Carrying Loads 131
4.6 Gas Lubrication Bearings 132
4.6.1 Basic Equations of Gas Lubrication 132
4.6.2 Types of Gas Lubrication Bearings 133
4.7 Rolling Contact Bearings 136
4.7.1 Equivalent Radius R 137
4.7.2 Average Velocity U 137
4.7.3 Carrying Load Per Width W/b 137
4.8 Gear Lubrication 138
4.8.1 Involute Gear Transmission 139
4.8.1.1 Equivalent Curvature Radius R 140
4.8.1.2 Average Velocity U 141
4.8.1.3 Load Per Width W/b 142
4.8.2 Arc Gear Transmission EHL 142
4.9 Cam Lubrication 144
References 146
Chapter 5 Special Fluid Medium Lubrication 148
5.1 Magnetic Hydrodynamic Lubrication 148
5.1.1 Composition and Classification of Magnetic Fluids 148
5.1.2 Properties of Magnetic Fluids 149
5.1.2.1 Density of Magnetic Fluids 149
5.1.2.2 Viscosity of Magnetic Fluids 149
5.1.2.3 Magnetization Strength of Magnetic Fluids 150
5.1.2.4 Stability of Magnetic Fluids 150
5.1.3 Basic Equations of Magnetic Hydrodynamic Lubrication 151
5.1.4 Influence Factors on Magnetic EHL 153
5.2 Micro-Polar Hydrodynamic Lubrication 154
5.2.1 Basic Equations of Micro-Polar Fluid Lubrication 154
5.2.1.1 Basic Equations of Micro-Polar Fluid Mechanics 154
5.2.1.2 Reynolds Equation of Micro-Polar Fluid 155
5.2.2 Influence Factors on Micro-Polar Fluid Lubrication 158
5.2.2.1 Influence of Load 158
5.2.2.2 Main Influence Parameters of Micro-Polar Fluid 159
5.3 Liquid Crystal Lubrication 160
5.3.1 Types of Liquid Crystal 160
5.3.1.1 Tribological Properties of Lyotropic Liquid Crystal 161
5.3.1.2 Tribological Properties of Thermotropic Liquid Crystal 161
5.3.2 Deformation Analysis of Liquid Crystal Lubrication 162
5.3.3 Friction Mechanism of Liquid Crystal as a Lubricant Additive 166
5.3.3.1 Tribological Mechanism of 4-pentyl-4?-cyanobiphenyl 166
5.3.3.2 Tribological Mechanism of Cholesteryl Oleyl Carbonate 166
5.4 Electric Double Layer Effect in Water Lubrication 167
5.4.1 Electric Double Layer Hydrodynamic Lubrication Theory 168
5.4.1.1 Electric Double Layer Structure 168
5.4.1.2 Hydrodynamic Lubrication Theory of Electric Double Layer 168
5.4.2 Influence of Electric Double Layer on Lubrication Properties 172
5.4.2.1 Pressure Distribution 172
5.4.2.2 Load-Carrying Capacity 173
5.4.2.3 Friction Coefficient 174
5.4.2.4 An Example 174
References 175
Chapter 6 Lubrication Transformation and Nanoscale Thin Film Lubrication 177
6.1 Transformations of Lubrication States 177
6.1.1 Thickness-Roughness Ratio ?????? 177
6.1.2 Transformation from Hydrodynamic Lubrication to EHL 178
6.1.3 Transformation from EHL to Thin Film Lubrication 179
6.2 Thin Film Lubrication 182
6.2.1 Phenomenon of Thin Film Lubrication 183
6.2.2 Time Effect of Thin Film Lubrication 184
6.2.3 Shear Strain Rate Effect on Thin Film Lubrication 187
6.3 Analysis of Thin Film Lubrication 188
6.3.1 Difficulties in Numerical Analysis of Thin Film Lubrication 188
6.3.2 Tichy's Thin Film Lubrication Models 190
6.3.2.1 Direction Factor Model 190
6.3.2.2 Surface Layer Model 191
6.3.2.3 Porous Surface Layer Model 191
6.4 Nano-Gas Film Lubrication 191
6.4.1 Rarefied Gas Effect 192
6.4.2 Boundary Slip 193
6.4.2.1 Slip Flow 193
6.4.2.2 Slip Models 193
6.4.2.3 Boltzmann Equation for Rarefied Gas Lubrication 195
6.4.3 Reynolds Equation Considering the Rarefied Gas Effect 195
6.4.4 Calculation of Magnetic Head/Disk of Ultra Thin Gas Lubrication[21] 196
6.4.4.1 Large Bearing Number Problem 197
6.4.4.2 Sudden Step Change Problem 197
6.4.4.3 Solution of Ultra-Thin Gas Lubrication of Multi-Track Magnetic Heads 197
References 199
Chapter 7 Boundary Lubrication and Additives 201
7.1 Types of Boundary Lubrication 201
7.1.1 Stribeck Curve 201
7.1.2 Adsorption Films and Their Lubrication Mechanisms 202
7.1.2.1 Adsorption Phenomena and Adsorption Films 202
7.1.2.2 Structure and Property of Adsorption Films 204
7.1.3 Chemical Reaction Film and its Lubrication Mechanism 207
7.1.3.1 Additives of Chemical Reaction Film 208
7.1.3.2 Notes for Applications of Extreme Pressure Additives 208
7.1.4 Other Boundary Films and their Lubrication Mechanisms 209
7.1.4.1 High Viscosity Thick Film 209
7.1.4.2 Polishing Thin Film 209
7.1.4.3 Surface Softening Effect 209
7.2 Theory of Boundary Lubrication 209
7.2.1 Boundary Lubrication Model 209
7.2.2 Factors Influencing Performance of Boundary Films 211
7.2.2.1 Internal Pressure Caused by Surface Tension 211
7.2.2.2 Adsorption Heat of Boundary Film 212
7.2.2.3 Critical Temperature 213
7.2.3 Strength of Boundary Film 214
7.3 Lubricant Additives 215
7.3.1 Oily Additives 215
7.3.2 Tackifier 216
7.3.3 Extreme Pressure Additives (EP Additives) 217
7.3.4 Anti-Wear Additives 217
7.3.5 Other Additives 217
References 219
Chapter 8 Lubrication Failure and Mixed Lubrication 220
8.1 Roughness and Viscoelastic Material Effects on Lubrication 220
8.1.1 Modifications of Micro-EHL 220
8.1.2 Viscoelastic Model 221
8.1.3 Lubricated Wear 222
8.1.3.1 Lubricated Wear Criteria 223
8.1.3.2 Lubricated Wear Model 223
8.1.3.3 Lubricated Wear Example 223
8.2 Influence of Limit Shear Stress on Lubrication Failure 225
8.2.1 Visco-Plastic Constitutive Equation 225
8.2.2 Slip of Fluid-Solid Interface 226
8.2.3 Influence of Slip on Lubrication Properties 226
8.3 Influence of Temperature on Lubrication Failure 230
8.3.1 Mechanism of Lubrication Failure Caused by Temperature 230
8.3.2 Thermal Fluid Constitutive Equation 231
8.3.3 Analysis of Lubrication Failure 232
8.4 Mixed Lubrication 233
References 237
Part II Friction and Wear 239
Chapter 9 Surface Topography and Contact 241
9.1 Parameters of Surface Topography 241
9.1.1 Arithmetic Mean Deviation Ra 241
9.1.2 Root-Mean-Square Deviation (RMS) ?????? or Rq 241
9.1.3 Maximum Height Rmax 242
9.1.4 Load-Carrying Area Curve 242
9.1.5 Arithmetic Mean Interception Length of Centerline Sma 242
9.1.5.1 Slope z?a or z?q 243
9.1.5.2 Peak Curvature Ca or Cq 243
9.2 Statistical Parameters of Surface Topography 243
9.2.1 Height Distribution Function 244
9.2.2 Deviation of Distribution 245
9.2.3 Autocorrelation Function of Surface Profile 246
9.3 Structures and Properties of Surface 247
9.4 Rough Surface Contact 249
9.4.1 Single Peak Contact 249
9.4.2 Ideal Roughness Contact 250
9.4.3 Random Roughness Contact 251
9.4.4 Plasticity Index 253
References 253
Chapter 10 Sliding Friction and its Applications 255
10.1 Basic Characteristics of Friction 255
10.1.1 Influence of Stationary Contact Time 256
10.1.2 Jerking Motion 256
10.1.3 Pre-Displacement 257
10.2 Macro-Friction Theory 258
10.2.1 Mechanical Engagement Theory 258
10.2.2 Molecular Action Theory 259
10.2.3 Adhesive Friction Theory 259
10.2.3.1 Main Points of Adhesive Friction Theory 260
10.2.3.2 Revised Adhesion Friction Theory 262
10.2.4 Plowing Effect 263
10.2.5 Deformation Energy Friction Theory 265
10.2.6 Binomial Friction Theory 266
10.3 Micro-Friction Theory 268
10.3.1 "Cobblestone" Model 268
10.3.2 Oscillator Models 270
10.3.2.1 Independent Oscillator Model 270
10.3.2.2 Composite Oscillator Model 271
10.3.2.3 FK Model 272
10.3.3 Phonon Friction Model 272
10.4 Sliding Friction 273
10.4.1 Influence of Load 273
10.4.2 Influence of Sliding Velocity 274
10.4.3 Influence of Temperature 275
10.4.4 Influence of Surface Film 275
10.5 Other Friction Problems and Friction Control 276
10.5.1 Friction in Special Working Conditions 276
10.5.1.1 High Velocity Friction 276
10.5.1.2 High Temperature Friction 276
10.5.1.3 Low Temperature Friction 277
10.5.1.4 Vacuum Friction 277
10.5.2 Friction Control 277
10.5.2.1 Method of Applying Voltage 277
10.5.2.2 Effectiveness of Electronic Friction Control 278
10.5.2.3 Real-Time Friction Control 279
References 280
Chapter 11 Rolling Friction and its Applications 282
11.1 Basic Theories of Rolling Friction 282
11.1.1 Rolling Resistance Coefficient 282
11.1.2 Rolling Friction Theories 284
11.1.2.1 Hysteresis Theory 285
11.1.2.2 Plastic Deformation Theory 286
11.1.2.3 Micro Slip Theory 287
11.1.3 Adhesion Effect on Rolling Friction 288
11.1.4 Factors Influencing Rolling Friction of Wheel and Rail 290
11.1.5 Thermal Analysis of Wheel and Rail 292
11.1.5.1 Heat Transferring Model of Wheel and Rail Contact 292
11.1.5.2 Temperature Rise Analysis of Wheel and Rail Contact 294
11.1.5.3 Transient Temperature Rise Analysis of Wheel for Two-Dimensional Thermal Shock 298
11.1.5.4 Three-Dimensional Transient Analysis of Temperature Rise of Contact 299
11.1.5.5 Thermal Solution for the Rail 300
11.2 Applications of Rolling Tribology in Design of Lunar Rover 301
11.2.1 Foundations of Force Analysis for Rigid Wheel 301
11.2.1.1 Resistant Force of Driving Rigid Wheel 301
11.2.1.2 Driving Force and Sliding/Rolling Ratio of the Wheel 304
11.2.2 Mechanics Model of a Wheel on a Soft Surface 305
11.2.2.1 Wheel Sinkage 306
11.2.2.2 Soil Deformation and Stress Model 306
11.2.2.3 Interaction Force between Wheel and Soil 307
11.2.3 Dynamic Analysis of Rolling Mechanics of Lunar Rover with Unequal Diameter Wheel 308
11.2.3.1 Structure with Unequal Diameter Wheel 308
11.2.3.2 Interaction model of wheel and soil 308
11.2.3.3 Model and Calculation of Movement for Unequal Diameter Wheel 310
References 310
Chapter 12 Characteristics and Mechanisms of Wear 312
12.1 Classification of Wear 312
12.1.1 Wear Categories 312
12.1.1.1 Mechanical Wear 312
12.1.1.2 Molecular and Mechanical Wear 313
12.1.1.3 Corrosive and Mechanical Wear 313
12.1.2 Wear Process 313
12.1.2.1 Surface Interaction 313
12.1.2.2 Variation of Surface 313
12.1.2.3 Forms of Surface Damage 314
12.1.3 Conversion of Wear 315
12.2 Abrasive Wear 315
12.2.1 Types of Abrasive Wear 315
12.2.2 Factors Influencing Abrasive Wear 316
12.2.3 Mechanism of Abrasive Wear 319
12.3 Adhesive Wear 320
12.3.1 Types of Adhesive Wear 321
12.3.1.1 Light Adhesive Wear 321
12.3.1.2 Common Adhesive Wear 321
12.3.1.3 Scratch 321
12.3.1.4 Scuffing 321
12.3.2 Factors Influencing Adhesive Wear 321
12.3.2.1 Load 321
12.3.2.2 Surface Temperature 322
12.3.2.3 Materials 323
12.3.3 Adhesive Wear Mechanism 324
12.3.4 Criteria of Scuffing 326
12.3.4.1 p0Us ? c Criterion 326
12.3.4.2 WUns?c 326
12.3.4.3 Instantaneous Temperature Criterion 327
12.3.4.4 Scuffing Factor Criterion 328
12.4 Fatigue Wear 328
12.4.1 Types of Fatigue Wear 328
12.4.1.1 Superficial Fatigue Wear and Surface Fatigue Wear 328
12.4.1.2 Pitting and Peeling 329
12.4.2 Factors Influencing Fatigue Wear 330
12.4.2.1 Load Property 330
12.4.2.2 Material Property 332
12.4.2.3 Physical and Chemical Effects of the Lubricant 332
12.4.3 Criteria of Fatigue Strength and Fatigue Life 333
12.4.3.1 Contact Stress State 333
12.4.3.2 Contact Fatigue Strength Criteria 334
12.4.3.3 Contact Fatigue Life 336
12.5 Corrosive Wear 337
12.5.1 Oxidation Wear 337
12.5.2 Special Corrosive Wear 339
12.5.2.1 Factors Influencing the Corrosion Wear 339
12.5.2.2 Chemical-Mechanical Polishing 339
12.5.3 Fretting 339
12.5.4 Cavitation Erosion 340
References 342
Chapter 13 Macro-Wear Theory 344
13.1 Friction Material 345
13.1.1 Friction Material Properties 345
13.1.1.1 Mechanical Properties 345
13.1.1.2 Anti-Friction and Wear-Resistance 345
13.1.1.3 Thermal Property 346
13.1.1.4 Lubrication Ability 346
13.1.2 Wear-Resistant Mechanism 346
13.1.2.1 Hard Phase Bearing Mechanism 346
13.1.2.2 Soft Phase Bearing Mechanism 346
13.1.2.3 Porous Saving Oil Mechanism 346
13.1.2.4 Plastic Coating Mechanism 347
13.2 Wear Process Curve 347
13.2.1 Types of Wear Process Curves 347
13.2.2 Running-In 347
13.2.2.1 Working Life 348
13.2.2.2 Measures to Improve the Running-in Performance 349
13.3 Surface Quality and Wear 350
13.3.1 Influence of Geometric Quality 351
13.3.2 Physical Quality 353
13.4 Theory of Adhesion Wear 354
13.5 Theory of Energy Wear 355
13.6 Delamination Wear Theory and Fatigue Wear Theory 357
13.6.1 Delamination Wear Theory 357
13.6.2 Fatigue Wear Theory 359
13.7 Wear Calculation 359
13.7.1 IBM Wear Calculation Method 359
13.7.1.1 Type A 360
13.7.1.2 Type B 361
13.7.2 Calculation Method of Combined Wear 361
References 365
Chapter 14 Anti-Wear Design and Surface Coating 367
14.1 Selection of Lubricant and Additive 367
14.1.1 Lubricant Selection 367
14.1.1.1 Viscosity, Viscosity Index and Viscosity-Pressure Coefficient 369
14.1.1.2 Stability 369
14.1.1.3 Other Requirements 369
14.1.2 Grease Selection 370
14.1.2.1 The Composition of Grease 370
14.1.2.2 Function of Densifier 370
14.1.2.3 Grease Additives 370
14.1.3 Solid Lubricants 371
14.1.4 Seal and Filter 371
14.2 Matching Principles of Friction Materials 373
14.2.1 Material Mating for Abrasive Wear 373
14.2.2 Material Mating for Adhesive Wear 374
14.2.3 Material Mating for Contact Fatigue Wear 375
14.2.4 Material Mating for Fretting Wear 375
14.2.5 Material Mating for Corrosion Wear 375
14.2.6 Surface Hardening 376
14.3 Surface Coating 376
14.3.1 Common Plating Methods 377
14.3.1.1 Bead Welding 377
14.3.1.2 Thermal Spraying 378
14.3.1.3 Slurry Coating 379
14.3.1.4 Electric Brush Plating 380
14.3.1.5 Plating 380
14.3.2 Design of Surface Coating 384
14.3.2.1 General Principles of Coating Design 384
14.3.2.2 Selection of Surface Plating Method 384
14.4 Coating Performance Testing 385
14.4.1 Appearance and Structure 385
14.4.1.1 Coating Appearance 385
14.4.1.2 Measurement of Coating Thickness 385
14.4.1.3 Determination of Coating Porosity 385
14.4.2 Bond Strength Test 386
14.4.2.1 Drop Hammer Impact Test 386
14.4.2.2 Vibrator Impact Test 386
14.4.2.3 Scratch Test 387
14.4.2.4 Broken Test 387
14.4.2.5 Tensile Bond Strength Test 387
14.4.2.6 Shear Bond Strength Test 387
14.4.2.7 Measurement of Internal Bond Strength of Coating 388
14.4.3 Hardness Test 390
14.4.3.1 Micro-Hardness (Hm) Testing 390
14.4.3.2 Hoffman Scratch Hardness Testing 390
14.4.4 Wear Test 390
14.4.5 Tests of Other Performances 391
14.4.5.1 Fatigue Test 391
14.4.5.2 Measurement of Residual Stress 391
References 392
Chapter 15 Tribological Experiments 393
15.1 Tribological Experimental Method and Devices 393
15.1.1 Experimental Methods 393
15.1.1.1 Laboratory Specimen Test 393
15.1.1.2 Simulation Test 393
15.1.1.3 Actual Test 393
15.1.2 Commonly Used Friction and Wear Testing Machines 394
15.1.3 EHL and Thin Film Lubrication Test 395
15.1.3.1 EHL and Thin Film Lubrication Test Machine 395
15.1.3.2 Principle of Relative Light Intensity 396
15.2 Measurement of Wear Capacity 398
15.2.1 Weighing Method 398
15.2.2 Length Measurement Method 398
15.2.3 Profile Method 398
15.2.4 Indentation Method 399
15.2.5 Grooving Method 401
15.2.6 Precipitation Method and Chemical Analysis Method 402
15.2.7 Radioactive Method 403
15.3 Analysis of Friction Surface Morphology 403
15.3.1 Analysis of Surface Topography 403
15.3.2 Atomic Force Microscope (AFM) 404
15.3.3 Surface Structure Analysis 405
15.3.4 Surface Chemical Composition Analysis 407
15.3.4.1 Energy Spectrum Analysis 407
15.3.4.2 Electron Probe Micro-Analysis (EPMA) 407
15.4 Wear State Detection 408
15.4.1 Ferrography Analysis 408
15.4.2 Spectral Analysis 409
15.4.3 Lubricant Composition Analysis 410
15.4.4 Mechanical Vibration and Noise Analysis 410
15.4.5 Lubrication State Analysis 410
15.5 Wear Failure Analysis 410
15.5.1 Site Investigation 410
15.5.2 Lubricant and its Supply System 411
15.5.3 Worn Part Analysis 411
15.5.4 Design and Operation 411
References 413
Part III Applied Tribology 415
Chapter 16 Micro-Tribology 417
16.1 Micro-Friction 417
16.1.1 Macro-Friction and Micro-Friction 417
16.1.2 Micro-Friction and Surface Topography 418
16.1.3 Plowing Effect and Adhesion Effect 421
16.1.3.1 Plowing Effect 421
16.1.3.2 Adhesion Effect 421
16.2 Micro-Contact and Micro-Adhesion 423
16.2.1 Solid Micro-Contact 423
16.2.1.1 Zero Load Contact 423
16.2.1.2 Elastic, Elastic-Plastic and Plastic Contacts 423
16.2.2 Solid Adhesion and Surface Force 424
16.2.2.1 Solid Adhesion Phenomena 424
16.2.2.2 Adhesion and Surface Force 425
16.3 Micro-Wear 426
16.3.1 Micro-Wear Experiment 426
16.3.2 Micro-Wear of Magnetic Head and Disk 428
16.4 Molecular Film and Boundary Lubrication 431
16.4.1 Static Shear Property of Molecular Layer 431
16.4.2 Dynamic Shear Property of Monolayer and Stick-Slip Phenomenon 432
16.4.3 Physical State and Phase Change 434
16.4.4 Temperature Effect and Friction Mechanism 435
16.4.5 Rheological Property of Molecular Film 436
16.4.6 Organized Molecular Film 438
16.4.6.1 LB Film 438
16.4.6.2 Self-Assembled Monolayer 439
References 440
Chapter 17 Metal Forming Tribology 442
17.1 Mechanics Basis of Metal Forming 442
17.1.1 Yield Criterion 442
17.1.2 Friction Coefficient and Shear Factor 443
17.1.2.1 Friction Coefficient and Interface Adhesion 443
17.1.2.2 Shear Factor 444
17.1.3 Influence of Friction on Metal Forming 444
17.1.3.1 Influence of Friction on Deformation Force 445
17.1.3.2 Non-Uniform Deformation 445
17.2 Forging Tribology 446
17.2.1 Upsetting Friction 446
17.2.1.1 Cylinder Upsetting 446
17.2.1.2 Ring Upsetting 447
17.2.2 Friction of Open Die Forging 448
17.2.3 Friction of Closed-Die Forging 448
17.2.4 Lubrication and Wear 448
17.3 Drawing Tribology 451
17.3.1 Friction and Temperature 451
17.3.2 Lubrication 452
17.3.2.1 Establishment of Hydrodynamic Lubrication 453
17.3.2.2 Hydrodynamic Lubrication Calculation of Drawing 454
17.3.3 Wear of Drawing Die 454
17.3.3.1 Wear of Die Shape 454
17.3.3.2 Wear Mechanism 455
17.3.3.3 Measures to Reduce Wear 455
17.3.4 Anti-Friction of Ultrasound in Drawing 457
17.4 Rolling Tribology 459
17.4.1 Friction in Rolling 459
17.4.1.1 Pressure Distribution and Frictional Force 459
17.4.1.2 Friction Coefficient of Rolling 460
17.4.2 Lubrication in Rolling 462
17.4.2.1 Full Film Lubrication 462
17.4.2.2 Mixed Lubrication 462
17.4.3 Roller Wear 464
17.4.4 Emulsion Lubricity in Rolling 464
References 465
Chapter 18 Bio-Tribology 467
18.1 Mechanics Basis for Soft Biological Tissue 467
18.1.1 Rheological Properties of Soft Tissue 467
18.1.2 Stress-Strain Curve Analysis 467
18.1.3 Anisotropy Relationships 469
18.2 Characteristics of Joint Lubricating Fluid 470
18.2.1 Joint Lubricating Fluid 470
18.2.2 Lubrication Characteristics of Joint Fluid 471
18.3 Lubrication of Human and Animal Joints 473
18.3.1 Performance of Human Joint 474
18.3.2 Joint Lubricating Fluid 475
18.3.3 Lubrication Mechanism of Joint 476
18.4 Friction and Wear of Artificial Joint 477
18.4.1 Friction and Wear Test 477
18.4.2 Wear of Artificial Joint 478
18.4.2.1 Experimental Method and Apparatus 479
18.4.2.2 Test Results 479
18.5 Other Bio-Tribological Studies 481
Referencess 482
Chapter 19 Space Tribology 483
19.1 Features of Space Agency and Space Tribology 483
19.1.1 Working Conditions in Space 483
19.1.2 Features of Space Tribology Problems 485
19.2 Analysis of Performances of Space Tribology 486
19.2.1 Starved Lubrication 486
19.2.2 Parched Lubrication 486
19.2.3 Volatility Analysis 488
19.2.4 Creeping 490
19.3 Space Lubricating Properties 492
19.3.1 EHL Characteristics of Space Lubricant 492
19.3.2 Space Lubrication of Rolling Contact Bearing 493
19.3.2.1 Bearing Coating 493
19.3.2.2 Lubricant Film Transfer Technology 494
19.3.2.3 Cage Instability 494
References 495
Chapter 20 Tribology of Micro Electromechanical System 496
20.1 Introduction 496
20.2 Tribological Analysis Technique for MEMS 497
20.2.1 Measurement of Micro/Nano-Frictional Force 497
20.2.2 Stick-Slip Phenomenon 500
20.2.3 Measurement of Micro Adhesive Force 503
20.2.4 Factors Influencing Surface Analysis 503
20.2.4.1 Normal Load 503
20.2.4.2 Temperature 508
20.2.4.3 Sliding Velocity 513
20.3 Tribological Study of a Micro Motor 514
20.3.1 Lubrication of Micro Motor 516
20.3.2 Measurement of Frictional Force 517
20.3.3 Influence Factors 518
20.3.3.1 Intermittent Time 518
20.3.3.2 Humidity 519
20.3.3.3 Hydrodynamic Film and Boundary Film 520
20.4 Wear Analysis of MEMS 521
20.4.1 Mechanism of Micro Wear 522
20.4.2 Micro Wear of Monocrystalline Silicon 524
20.4.3 Micro Wear of Nickel Titanium Shape Memory Alloy 526
20.4.3.1 Indentation 527
20.4.3.2 Temperature 529
20.4.4 Analysis of Surface Bulging 531
20.4.4.1 Bulging Phenomenon 532
20.4.4.2 Mechanism of Bulging 534
References 537
Chapter 21 Ecological Tribology 539
21.1 Zero Friction and Superlubrication 539
21.1.1 Phenomenon of Superlubrication 539
21.1.2 Mechanisms of Superlubrication 540
21.1.2.1 Superfluidity 540
21.1.2.2 Superlubrication for Special Surface Pair and in a Special Direction 541
21.1.2.3 Superdynamic Friction 542
21.1.2.4 Molecular Polymer Film 543
21.1.3 Discussion of Superlubrication 544
21.1.3.1 Molecular Organization 544
21.1.3.2 Types of Molecular Films 544
21.1.3.3 Influence of External Field 545
21.2 Green Lubricant 546
21.2.1 Introduction of Green Lubricants 547
21.2.1.1 Harmfulness of petroleum products 547
21.2.1.2 Harmfulness of Waste Oil 547
21.2.1.3 Harmfulness of Waste Gas 547
21.2.1.4 Green Basis Oils, Lubricating Oil and Additives 547
21.2.2 Development of Green Lubricating Oil for Refrigeration 548
21.2.3 Application Tests 550
21.2.3.1 Application Test of Polyether Oil GE-30T 550
21.2.3.2 Application Test GT-50T 551
21.2.4 Biodegradation Test 551
21.3 Friction-Induced Noise and Control 553
21.3.1 Stick-Slip Model 553
21.3.2 Friction-Induced Noise of Wheel-Rail 554
21.3.3 Friction-Induced Noise of Rolling Contact Bearing 556
21.3.3.1 Sources of Noise 556
21.3.3.2 Influence Factors of Noise 557
21.4 Remanufacturing and Self-Repairing 558
21.4.1 Remanufacturing 559
21.4.1.1 Laser Remanufacturing Technology 559
21.4.1.2 Electric Brush Plating Technology 560
21.4.1.3 Nano Brush Plating Technology 560
21.4.1.4 Supersonic Spray Coating Technology 560
21.4.2 Self-Repairing 561
21.4.2.1 Spreading Film 561
21.4.2.2 Eutectic Film 561
References 562
Index 565
EULA 569
| Erscheint lt. Verlag | 30.5.2017 |
|---|---|
| Sprache | englisch |
| Themenwelt | Naturwissenschaften |
| Technik ► Maschinenbau | |
| Weitere Fachgebiete ► Land- / Forstwirtschaft / Fischerei | |
| Schlagworte | Dünne Schichten, Oberflächen u. Grenzflächen • experimental measuring techniques • Festkörpermechanik • Friction Control • Friction mechanism • Green lubricants • Green Tribology • lubrication design • Lubrication Theory • Maschinenbau • Maschinenbau - Entwurf • Materials Science • Materialwissenschaften • mechanical engineering • Mechanical Engineering - Design • MEMS • Nano-Tribology • numerical analysis methods • Reibung • rolling lubrication • solid mechanics • Thin Film Lubrication • Thin Films, Surfaces & Interfaces • Tribologie • Tribology • Wear Mechanism |
| ISBN-10 | 1-119-21492-0 / 1119214920 |
| ISBN-13 | 978-1-119-21492-2 / 9781119214922 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich