Graph Convolutional Neural Networks for Computer Vision (eBook)
307 Seiten
Wiley-Scrivener (Verlag)
978-1-394-35635-5 (ISBN)
Revolutionize your machine learning practice with this essential book that provides expert insights into leveraging Graph Convolutional Networks (GCNNs) to overcome the limitations of traditional CNNs.
In the last decade, computer vision has become a major focus for addressing the world's growing processing needs. Many existing deep learning architectures for computer vision challenges are based on convolutional neural networks (CNNs). Despite their great achievements, CNNs struggle to encode the intrinsic graph patterns in specific learning tasks. In contrast, graph convolutional networks have been used to address several computer vision issues with equivalent or superior results. The use of GCNNs has shown significant achievement in image classifications, video understanding, point clouds, meshes, and other applications in natural language processing. This book focuses on the applications of graph convolutional networks in computer vision. Through expert insights, it explores how researchers are finding ways to perform convolution algorithms on graphs to improve the way we use machine learning.
Malini Alagarsamy, PhD is an assistant professor at the Thiagarajar College of Engineering. She has published more than 30 research papers in journals and national and international conferences. Her research interests include software engineering, mobile application development, green computing, Internet of Things, blockchain, and machine learning.
Rajesh Kumar Dhanaraj, PhD is a Professor in the School of Computing Science and Engineering at Galgotias University. He has authored and edited more than 25 books and 53 articles in international journals and conferences and holds 21 patents. His research interests include machine learning, cyber-physical systems, and wireless sensor networks.
J. Felicia Lilian is an Assistant Professor at the Thiagarajar College of Engineering. She has published more than 10 articles in international journals and conferences. Her research interests include natural language processing, machine learning, and deep learning.
Vandana Sharma, PhD is an Associate Professor at the Amity Institute of Information Technology at the Amity University Noida Campus with more than 14 years of teaching experience. She has published 25 research papers in international journals and conferences. Her primary areas of interest include artificial intelligence, machine learning, blockchain technology, and the Internet of Things (IoT).
George Ghinea, PhD is a Professor in the Department of Computer Science at Brunel University London. He has more than 600 publications to his credit, including book chapters and research articles in international journals of repute. His research centers on extending the notion of multimedia with that of mulsemedia, a term to denote multiple sensorial media.
| Erscheint lt. Verlag | 19.11.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Technik ► Elektrotechnik / Energietechnik | |
| ISBN-10 | 1-394-35635-8 / 1394356358 |
| ISBN-13 | 978-1-394-35635-5 / 9781394356355 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich