Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Error Detection Algorithm For 3D Multi-Material Printer Using Unsupervised Machine Learning - Kornchanok Chaowarat

Error Detection Algorithm For 3D Multi-Material Printer Using Unsupervised Machine Learning

Buch | Softcover
116 Seiten
2025
Universitätsverlag Chemnitz
978-3-96100-275-7 (ISBN)
CHF 17,95 inkl. MwSt
3D printing technology has revolutionized the manufacturing industry by providing a flexible and efficient approach to constructing complex three-dimensional objects from digital blueprints, layer by layer. Despite the numerous benefits of this technology, such as reducing waste and streamlining production, it also presents unique challenges and potential drawbacks. Errors and inconsistencies can lead to defects, inaccuracies, or failed prints, making it crucial to address these obstacles to enhance the overall quality and reliability of 3D-printed objects.The purpose of this dissertation is to analyze each layer to identify any potential printing errors. To accomplish this objective, a camera is integrated into the 3D printer, capturing real-time images of each layer created during production. The methodology focuses on unsupervised machine learning, mainly using the K-means Algorithm and Gaussian Mixture Model (GMM) to detect possible errors.The analysis is conducted in two stages: an initial phase involving a first layer of basic models to ensure accuracy and a subsequent phase analyzing actual printed electric machines. The study indicates that K-means and GMM produce comparable precision, recall, and F-measure results. However, the complexity of model structures and the number of materials used on each layer can affect the algorithm's accuracy. The error detection algorithm achieves a robust detection rate, ensuring the identification of errors in higher layers of multi-material structures.
Erscheinungsdatum
Zusatzinfo Illustrationen, Diagramme
Verlagsort Chemnitz
Sprache englisch
Maße 148 x 210 mm
Gewicht 180 g
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte 3D-Druck • Fehlererkennung • Maschinelles Lernen
ISBN-10 3-96100-275-4 / 3961002754
ISBN-13 978-3-96100-275-7 / 9783961002757
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen, Systemtechnik und Analysen ausgeführter Beispiele …

von Holger Watter

Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 55,95
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
CHF 67,20