Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Intelligent Data Analytics for Solar Energy Prediction and Forecasting -  Majed A. Alotaibi,  Hasmat Malik,  Amit Kumar Yadav

Intelligent Data Analytics for Solar Energy Prediction and Forecasting (eBook)

Advances in Resource Assessment and PV Systems Optimization
eBook Download: EPUB
2025 | 1. Auflage
350 Seiten
Elsevier Science (Verlag)
978-0-443-13483-8 (ISBN)
Systemvoraussetzungen
177,62 inkl. MwSt
(CHF 173,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Intelligent Data Analytics for Solar Energy Prediction and Forecasting: Advances in Resource Assessment and PV Systems Optimization explores the utilization of advanced neural networks, machine learning and data analytics techniques for solar radiation prediction, solar energy forecasting, installation and maximum power generation. The book addresses relevant input variable selection, solar resource assessment, tilt angle calculation, and electrical characteristics of PV modules, including detailed methods, coding, modeling and experimental analysis of PV power generation under outdoor conditions. It will be of interest to researchers, scientists and advanced students across solar energy, renewables, electrical engineering, AI, machine learning, computer science, information technology and engineers. In addition, R&D professionals and other industry personnel with an interest in applications of AI, machine learning, and data analytics within solar energy and energy systems will find this book to be a welcomed resource. - Presents novel intelligent techniques with step-by-step coverage for improved optimum tilt angle calculation for the installation of photovoltaic systems - Provides coding and modeling for data-driven techniques in prediction and forecasting - Covers intelligent data-driven techniques for solar energy forecasting and prediction

Dr. Amit Kumar Yadav received his B.Tech in Electrical and Electronics Engineering in 2009 from United College of Engineering and Research Naini Allahabad Uttar Pradesh, India, M.Tech. in Power Systems in 2011, and Ph.D. in artificial neural network-based prediction of solar radiation for optimum sizing of photovoltaic systems for power generation in 2016, from the Centre for Energy and Environmental Engineering National Institute of Technology, Hamirpur, Himachal Pradesh, India. Currently, he is faculty in the Electrical and Electronics Engineering Department, National Institute of Technology, Sikkim, India. Dr. Yadav has authored numerous articles in international journals, 10 book chapters, and 12 IEEE conference publications, is an Editorial Board Member of the Turkish Journal of Forecasting, and acts as a reviewer for a number of journals. He received an award as 'Best Researcher In Solar Photovoltaic Systems For Maximum Power Generation” in the Research Under Literal Access (RULA) International Awards in 2019. His research interests include Solar Photovoltaics, Engineering Optimization, Artificial Neural Network, Soft Computing, Wind Speed and Solar Radiation Prediction/Forecasting, Solar and Wind Resource Assessment, and Condition Monitoring of Photovoltaic Systems.
Intelligent Data Analytics for Solar Energy Prediction and Forecasting: Advances in Resource Assessment and PV Systems Optimization explores the utilization of advanced neural networks, machine learning and data analytics techniques for solar radiation prediction, solar energy forecasting, installation and maximum power generation. The book addresses relevant input variable selection, solar resource assessment, tilt angle calculation, and electrical characteristics of PV modules, including detailed methods, coding, modeling and experimental analysis of PV power generation under outdoor conditions. It will be of interest to researchers, scientists and advanced students across solar energy, renewables, electrical engineering, AI, machine learning, computer science, information technology and engineers. In addition, R&D professionals and other industry personnel with an interest in applications of AI, machine learning, and data analytics within solar energy and energy systems will find this book to be a welcomed resource. - Presents novel intelligent techniques with step-by-step coverage for improved optimum tilt angle calculation for the installation of photovoltaic systems- Provides coding and modeling for data-driven techniques in prediction and forecasting- Covers intelligent data-driven techniques for solar energy forecasting and prediction
Erscheint lt. Verlag 27.6.2025
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
ISBN-10 0-443-13483-9 / 0443134839
ISBN-13 978-0-443-13483-8 / 9780443134838
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55