Data Science: Foundations and Applications
Springer Nature Switzerland AG (Verlag)
978-981-96-8294-2 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
The 68 full papers included in this set were carefully reviewed and selected from 696 submissions. They were organized in topical sections as follows: survey track; machine learning; trustworthiness; learning on complex data; graph mining; machine learning applications; representation learning; scientific/business data analysis; and special track on large language models.
.- Survey Track.
.- Large Language Models for Cybersecurity Education: A Survey of Current Practices and Future Directions.
.- A Comprehensive Survey on Deep Learning Solutions for 3D Flood Mapping.
.- A Survey of Foundation Models for Environmental Science.
.- A Survey on Efficient Graph Reachability Queries.
.- Machine Learning.
.- Disentangled Representation Learning for Geospatial-temporal Data Modeling.
.- Treatment Effect Estimation for Graph-Structured Targets.
.- Dynamic DropConnect: Enhancing Neural Network Robustness through Adaptive Edge Dropping Strategies.
.- The Brownian Integral Kernel: A New Kernel for Modeling Integrated Brownian Motions.
.- Fed-ARIMA-OPARBFN: An Ensemble Model for Cross-Domain Crop Yield Time Series Prediction Based on Federated Learning.
.- S-CPD: Topological Smoothing-Based Change Point Detection.
.- VDASI: VAE-Enhanced Degradation-Aware System Identification Using Constrained Latent Spaces.
.- Disentangled Mode-Specific Representations for Tensor Time Series via Contrastive Learning.
.- PFformer: A Position-Free Transformer Variant for Extreme-Adaptive Multivariate Time Series Forecasting.
.- Advancing Long-Term High-Frequency Dissolved Oxygen Forecasting for Australian Rivers.
.- CNO-former: Chaotic Neural Oscillatory Transformer for Social Media Text Generation.
.- Multilingual Non-Factoid Question Answering with Answer Paragraph Selection
.- Turning Uncertainty to Information by Intervals in Ensemble Classifiers.
.- Determining the Need for Multi-Label Classifiers by Measuring Unexplained Covariance.
.- Evaluating Generative Vehicle Trajectory Models for Traffic Intersection Dynamics.
.- Trustworthiness.
.- Inversion Triplet - A Contrastive Backdoor Mitigation Method for Self-Supervised Vision Encoders.
.- Beyond Uniformity: Robust Backdoor Attacks on Deep Neural Networks with Trigger Selection.
.- Defence Against Multi-target Multi-trigger Backdoor Attack.
.- How to Backdoor Consistency Models?.
.- Multi-granularity Policy Explanation of Deep Reinforcement Learning Based on Saliency Map Clustering.
.- FACROC: A Fairness Measure for Fair Clustering Through ROC Curves.
.- Learning on Complex Data.
.- Action Sequence Analysis Using Temporal Commonsense Knowledge.
.- Foundation Model for Lossy Compression of Spatiotemporal Scientific Data.
.- CANTER: A Novel Causal Model for Tourism Demand Forecasting.
.- Time-Aware Complex Attention Space for Temporal Knowledge Graph Completion.
.- Adaptive Extraction of Variable-Length Subsequence Patterns in Noisy Time Series.
.- Hunting Inside N-Quantiles of Outliers (Hino).
.- Fast Approximation Algorithm for Euclidean Minimum Spanning Tree Building in High Dimensions.
.- ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing Forecasting Models in Badminton.
.- Offline Map Matching Based on Localization Error Distribution Modeling.
| Erscheinungsdatum | 13.06.2025 |
|---|---|
| Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
| Zusatzinfo | 118 Illustrations, color; 23 Illustrations, black and white |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Schulbuch / Wörterbuch ► Unterrichtsvorbereitung ► Unterrichts-Handreichungen |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Sozialwissenschaften ► Pädagogik | |
| Technik ► Elektrotechnik / Energietechnik | |
| ISBN-10 | 981-96-8294-0 / 9819682940 |
| ISBN-13 | 978-981-96-8294-2 / 9789819682942 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich