Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistical Relational Artificial Intelligence in Photovoltaic Power Uncertainty Analysis -  Xueqian Fu

Statistical Relational Artificial Intelligence in Photovoltaic Power Uncertainty Analysis (eBook)

(Autor)

eBook Download: EPUB
2025 | 1. Auflage
350 Seiten
Elsevier Science (Verlag)
978-0-443-34042-0 (ISBN)
Systemvoraussetzungen
189,82 inkl. MwSt
(CHF 185,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Statistical Relational Artificial Intelligence in Photovoltaic Power Uncertainty Analysis addresses uncertainty issues in photovoltaic power generation while also supporting the collaborative enhancement of understanding and applying theory and methods through the integration of models, cases, and code. The book employs StaRAI to address uncertainty analysis and modeling issues at different time scales in photovoltaic power generation, including photovoltaic power prediction, probabilistic power flow, stochastic planning, and more. Chapters cover uncertainty of PV power generation from short to long time scales, including day-ahead scheduling (24 hours in advance), intraday scheduling (minute to hour rolling), and grid planning (15 years).Other sections study the impact of photovoltaic uncertainty on the power grid, offering the most classic cases of probabilistic load flow and PV stochastic planning.The theoretical content of this book is not only systematic but supplemented with concrete examples and MATLAB/Python codes. Its contents will be of interest to all those working on photovoltaic planning, power generation, power plants, and applications of AI, including researchers, advanced students, faculty engineers, R&D, and designers. - Explores how Statistical Relational Artificial Intelligence (StaRAI) can be applied to photovoltaic power prediction, maintenance, and planning - Provides a theoretical framework supported by schematic diagrams, real examples, and code - Discusses the potential for groundbreaking AI applications in PV, future opportunities, and ethical and societal impacts

Xueqian Fu is an Associate Professor at China Agricultural University (CAU), a Senior Member of IEEE, and Vice Chairman of IEEE Smart Village-CWG, IEEE Young Professionals. He is a one of the World's Top 2% Scientists 2023 and has been recognized as 'Outstanding Talent' and 'Young Star B' by China Agricultural University. Dr. Xu received his Ph.D. degree from South China University of Technology in 2015 and was a Post-Doctoral Researcher at Tsinghua University from 2015 to 2017. His current research interests include Statistical Machine Learning, Agricultural Energy Internet, and PV system integration. He serves as Deputy Editor-in-Chief for Information Processing in Agriculture and as Associate Editor for IET Renewable Power Generation, Artificial Intelligence and Applications, Protection and Control of Modern Power Systems and the Journal of Data Science and Intelligent Systems. He also serves as a youth editor for Clean Energy Science and Technology and Lead Guest Editor role for International Transactions on Electrical Energy Systems.
Statistical Relational Artificial Intelligence in Photovoltaic Power Uncertainty Analysis addresses uncertainty issues in photovoltaic power generation while also supporting the collaborative enhancement of understanding and applying theory and methods through the integration of models, cases, and code. The book employs StaRAI to address uncertainty analysis and modeling issues at different time scales in photovoltaic power generation, including photovoltaic power prediction, probabilistic power flow, stochastic planning, and more. Chapters cover uncertainty of PV power generation from short to long time scales, including day-ahead scheduling (24 hours in advance), intraday scheduling (minute to hour rolling), and grid planning (15 years).Other sections study the impact of photovoltaic uncertainty on the power grid, offering the most classic cases of probabilistic load flow and PV stochastic planning.The theoretical content of this book is not only systematic but supplemented with concrete examples and MATLAB/Python codes. Its contents will be of interest to all those working on photovoltaic planning, power generation, power plants, and applications of AI, including researchers, advanced students, faculty engineers, R&D, and designers. - Explores how Statistical Relational Artificial Intelligence (StaRAI) can be applied to photovoltaic power prediction, maintenance, and planning- Provides a theoretical framework supported by schematic diagrams, real examples, and code- Discusses the potential for groundbreaking AI applications in PV, future opportunities, and ethical and societal impacts
Erscheint lt. Verlag 16.4.2025
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
ISBN-10 0-443-34042-0 / 0443340420
ISBN-13 978-0-443-34042-0 / 9780443340420
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehr- und Arbeitsbuch

von Friedhelm Kuypers

eBook Download (2025)
Wiley-VCH (Verlag)
CHF 59,95
Lehr- und Arbeitsbuch

von Friedhelm Kuypers

eBook Download (2025)
Wiley-VCH (Verlag)
CHF 59,95