Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Toward Automotive Safety and Autonomy with Machine-Learning-Assisted Radar Perception

Advances in Object Tracking and Environment Mapping from Radar Data using Artificial Neural Networks

(Autor)

Buch | Hardcover
172 Seiten
2025
Shaker (Verlag)
978-3-8440-9935-5 (ISBN)

Lese- und Medienproben

Toward Automotive Safety and Autonomy with Machine-Learning-Assisted Radar Perception - Dominic Spata
CHF 82,30 inkl. MwSt
Recent years have seen a surge of interest in active automotive safety and autonomous driving systems. Such systems rely on robust and affordable perception platforms, requiring advanced processing techniques that derive higher-level environment descriptions. Increasingly, such processing is performed through data-driven machine learning methods. Radar especially has the potential to benefit greatly from such methods. It is a comparatively cheap sensor and resilient to adverse weather, but provides a set of challenges related to the fidelity of its data. Deep artificial neural networks excel at the non-trivial processing such data requires.
This thesis contributes innovations in the space of neural-network-driven automotive radar perception. The work presented herein develops mainly two complementary perception systems operating on data from likewise complementary sets of radar sensors. The first system performs short-range surround-view detection and tracking of dynamic objects. Its final iteration is capable of adaptively memorising and contextualising relevant information from the raw radar data, time-continuously predicting the near-future trajectory of close-by vehicles, and quantifying the system uncertainty. It achieves this using a novel architecture for a recurrent convolutional pyramid network. The second system performs medium-range occupancy segmentation of the three-dimensional static environment. It is capable of inferring the geometry of scene elements from highly incomplete raw data and mapping the location of traffic infrastructure such as the road and overhead objects. This is achieved using a novel scheme for the machine-learning-assisted refinement of occupancy grid maps.
Erscheinungsdatum
Reihe/Serie Berichte aus der Elektrotechnik
Verlagsort Düren
Sprache englisch
Maße 170 x 240 mm
Gewicht 572 g
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Artificial Intelligence • Automotive • Deep learning • machine learning • Neural networks • perception • Radar • Tracking
ISBN-10 3-8440-9935-2 / 3844099352
ISBN-13 978-3-8440-9935-5 / 9783844099355
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen, Systemtechnik und Analysen ausgeführter Beispiele …

von Holger Watter

Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 55,95
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
CHF 67,20