Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Models Demystified - Michael Clark, Seth Berry

Models Demystified

A Practical Guide from Linear Regression to Deep Learning
Buch | Hardcover
474 Seiten
2025
Chapman & Hall/CRC (Verlag)
9781032582580 (ISBN)
CHF 139,60 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
In this comprehensive guide, we delve into the world of data science, machine learning, and AI modeling, providing readers with a robust foundation and practical skills to tackle real-world problems.
Unlock the Power of Data Science and Machine Learning

In this comprehensive guide, we delve into the world of data science, machine
learning, and AI modeling, providing readers with a robust foundation and practical skills to tackle real-world problems. From basic modeling techniques to advanced machine learning algorithms, this book covers a wide range of topics,ensuring that readers at all levels can benefit from its content. Each chapter is meticulously crafted to offer clear explanations, hands-on examples, and code snippets in both Python and R, making complex concepts accessible and actionable. Additional focus is placed on model interpretation and estimation, common data issues, modeling pitfalls to avoid, and best practices for modeling in general.

Michael Clark is a senior machine learning scientist for OneSix, and in prior stints, was a data science consultant at the University of Michigan and Notre Dame. His models have been used in production across a variety of industries, and can be seen in dozens of publications across several academic disciplines. He has a passion for helping people of all skill levels learn difficult stuff. Seth Berry is the Academic Co-Director of the Master of Science in Business Analytics (MSBA) Residential Program, and Associate Teaching Professor at the University of Notre Dame for the IT, Analytics, and Operations Department. He has a PhD in Applied Experimental Psychology, and has been teaching and consulting in data science for over a decade.

1.Introduction

2.Thinking About Models

3.The Foundation

4.Understanding the Model

5.Understanding the Features

6.Model Estimation and Optimization

7.Estimating Uncertainty

8.Generalized Linear Models

9.Extending the Linear Model

10.Core Concepts in Machine Learning

11.Comon Models in Machine Learning

12.Extending Machine Learning

13.Causal Modeling

14.Dealing with Data

15.Danger Zone

16.Parting Thoughts

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Data Science Series
Zusatzinfo 104 Line drawings, black and white; 104 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 1070 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Technik Elektrotechnik / Energietechnik
ISBN-13 9781032582580 / 9781032582580
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20