Analytics Modeling in Reliability and Machine Learning and Its Applications (eBook)
XI, 349 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-72636-1 (ISBN)
This book presents novel research and application chapters on topics in reliability, statistics, and machine learning. It has an emphasis on analytical models and techniques and practical applications in reliability engineering, data science, manufacturing, health care, and industry using machine learning, AI, optimization, and other computational methods.
Today, billions of people are connected to each other through their mobile devices. Data is being collected and analysed more than ever before. The era of big data through machine learning algorithms, statistical inference, and reliability computing in almost all applications has resulted in a dramatic shift in the past two decades. Data analytics in business, finance, and industry is vital. It helps organizations and business to achieve better results and fact-based decision-making in all aspects of life.
The book offers a broad picture of current research on the analytics modeling and techniques and its applications in industry. Topics include:
l Reliability modeling and methods.
l Software reliability engineering.
l Maintenance modeling and policies.
l Statistical feature selection.
l Big data modeling.
l Machine learning: models and algorithms.
l Data-driven models and decision-making methods.
l Applications and case studies in business, health care, and industrial systems.
Postgraduates, researchers, professors, scientists, engineers, and practitioners in reliability engineering and management, machine learning engineering, data science, operations research, industrial and systems engineering, statistics, computer science and engineering, mechanical engineering, and business analytics will find in this book state-of-the-art analytics, modeling and methods in reliability and machine learning.
| Erscheint lt. Verlag | 20.1.2025 |
|---|---|
| Reihe/Serie | Springer Series in Reliability Engineering |
| Zusatzinfo | XI, 349 p. 131 illus., 111 illus. in color. |
| Sprache | englisch |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Mathematik / Informatik ► Mathematik | |
| Technik ► Bauwesen | |
| Technik ► Luft- / Raumfahrttechnik | |
| Schlagworte | AI • Analytical modeling • Analytics • Business Analytics • Data Science • Decision-Making • Deep learning • Feature Selection • machine learning • Modeling and algorithms • Optimization • Reliability • Statistical Inference |
| ISBN-10 | 3-031-72636-7 / 3031726367 |
| ISBN-13 | 978-3-031-72636-1 / 9783031726361 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich