Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Konzept eines Selbstheilungsmechanismus für Polymerelektrolytmembranen

Optimierung der Lebensdauer und der Effizienz von Brennstoffzellen
Buch | Softcover
277 Seiten
2025
Shaker (Verlag)
978-3-8440-9781-8 (ISBN)

Lese- und Medienproben

Konzept eines Selbstheilungsmechanismus für Polymerelektrolytmembranen - Patrizia Konstanze Gartner
CHF 83,70 inkl. MwSt
The fuel cell is gaining significant interest as a potential future energy converter, particularly in the automotive industry. It operates with high efficiency, emits no pollutants, and is independent of fossil fuels. The vision for the future is a fuel cell that is not only emission-free but also maximizes its sustainability potential. Given that fuel cells use valuable materials in a complex manufacturing process, they should also be durable. In line with circular economy principles, a self-healing mechanism for the polymer electrolyte membrane (PEM) is proposed to extend the fuel cell's service life, conserving resources and reducing costs. A major issue is the unavoidable wear phenomenon, specifically the formation of pinholes in the membranes. These pinholes reduce performance and lead to premature failure of the fuel cell. Proton-conducting polymer membranes, used in low-temperature fuel cells (60-80°C) for vehicle applications, are particularly susceptible to pinholes. This includes the polymer electrolyte membrane fuel cell (PEMFC), which is standard in commercial vehicles. Pinhole formation can occur during production or operation. While production-related pinholes can be avoided, those during operation, especially from frequent start-up cycles in automotive applications, cannot. This leads to a gradual reduction in fuel cell performance and eventual failure. This drives the investigation into self-healing mechanisms for pinholes in proton-conducting polymer membranes. This dissertation presents a novel self-healing concept based on filler-forming enzymes attached to the membrane. In the event of a pinhole, a monomer is introduced externally and transported through the fuel cell to the pinhole, where enzymes trigger in-situ polymerization.
Erscheinungsdatum
Reihe/Serie Forschungsberichte aus dem wbk, Institut für Produktionstechnik Universität Karlsruhe ; 290
Verlagsort Düren
Sprache deutsch
Maße 148 x 210 mm
Gewicht 348 g
Themenwelt Technik Maschinenbau
Schlagworte Brennstoffzelle • Lebensdauer • PEM • polymerelektrolytmembran • Selbstheilung
ISBN-10 3-8440-9781-3 / 3844097813
ISBN-13 978-3-8440-9781-8 / 9783844097818
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich