Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Fundamentals of Cost-Efficient AI - Rohit Kumar

Fundamentals of Cost-Efficient AI

In Healthcare and Biomedicine

(Autor)

Buch | Softcover
434 Seiten
2025
Academic Press Inc (Verlag)
978-0-443-33362-0 (ISBN)
CHF 249,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Fundamentals of Cost-Efficient AI: In Healthcare and Biomedicine provides a comprehensive yet accessible introduction to the principles of designing, training, and deploying efficient artificial intelligence systems. It explains the theory behind cost-aware machine learning and data mining and examines methods across deep learning, graph neural networks (GNNs), transformer architectures, diffusion models, reinforcement learning, and knowledge distillation.
The book covers fine-tuning and compression techniques such as low-rank adaptation (LoRA), parameter-efficient fine-tuning (PEFT), adapter-based tuning, pruning, and quantization. It also explores inference acceleration through Flash Attention, prefill optimization, and speculative decoding, and explains how mixture-of-experts (MoE) architectures can scale models efficiently across GPUs and edge devices.
To build a strong conceptual understanding, the text introduces fundamentals of GPU architecture, matrix multiplication, memory hierarchies, and parallelization strategies, helping readers develop an intuition for optimizing training and inference pipelines.
While applicable across domains, the book places special emphasis on healthcare and biomedicine, where efficient AI can reduce costs and improve diagnostics, precision medicine, and clinical decision support. Real-world case studies and interviews with experts from organizations such as Google and Microsoft provide practical insights into building scalable healthcare AI systems. Aimed at graduate students, researchers, clinicians, biomedical engineers, data scientists, and AI practitioners, this book bridges algorithmic principles with applied implementation.

Rohit Kumar studied at Stanford, IIT Delhi, and RPI, specializing in machine learning. He is the Global Head of AI & Analytics at HCLTech (Digital Business), a visiting faculty at Shiv Nadar University, and a PhD scholar at IIT researching AI hallucinations. With over 20 years of product development experience in Silicon Valley, he has served as the Head of R&D at the Ministry of IT (Government of India), Senior Director at WalmartLabs, and CEO of a blockchain startup. He holds multiple patents and publications on generative AI, data mining, and large-scale distributed systems.

Introduction
Efficient transformer architectures
Efficient model fine-tuning
Model compression techniques
Efficient reinforcement learning
Efficient graph algorithms
Training data augmentation
Training data generation
Cost efficient mixture of experts
GPU fundamentals and model inference
Fast matrix multiplication algorithms
Running models locally
Expert interviews and use cases

Erscheinungsdatum
Verlagsort San Diego
Sprache englisch
Maße 191 x 235 mm
Gewicht 450 g
Themenwelt Medizin / Pharmazie Gesundheitswesen
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie
Technik Medizintechnik
ISBN-10 0-443-33362-9 / 0443333629
ISBN-13 978-0-443-33362-0 / 9780443333620
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Spiraldynamik - programmierte Therapie für konkrete Resultate

von Christian Larsen

Buch | Hardcover (2021)
Thieme (Verlag)
CHF 146,95