Federated Learning for Medical Imaging
Academic Press Inc (Verlag)
978-0-443-23641-9 (ISBN)
This book is a complete resource for computer scientists and engineers, as well as clinicians and medical care policy makers, wanting to learn about the application of federated learning to medical imaging.
Xiaoxiao Li is Assistant Professor, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada. Ziyue Xu, Senior Scientist, NVIDIA, Santa Clara, California, United States of America. Huazhu Fu, Principal Scientist, Agency for Science, Technology and Research (A*STAR), Singapore.
Section I Fundamentals of FL
1. Background
2. FL Foundations
Section II Advanced Concepts and Methods for Heterogenous Settings
3. FL on Heterogeneous Data
4. FL on long-tail (label)
5. Personalized FL
6. Cross-domain FL
Section III Trustworthy FL
7. FL and Fairness
8. Differential Privacy
9. Security (Attack and Defense) in FL
10. FL + Uncertainty
11. Noisy learning in FL
Section IV Real-world Implementation and Application
12. Image Segmentation
13. Image Reconstruction and Registration
14. Frameworks and Platforms
Section V Afterword
15. Summary and Outlook
| Erscheinungsdatum | 23.04.2025 |
|---|---|
| Reihe/Serie | The MICCAI Society book Series |
| Verlagsort | San Diego |
| Sprache | englisch |
| Maße | 191 x 235 mm |
| Gewicht | 490 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
| Technik ► Medizintechnik | |
| Technik ► Umwelttechnik / Biotechnologie | |
| ISBN-10 | 0-443-23641-0 / 0443236410 |
| ISBN-13 | 978-0-443-23641-9 / 9780443236419 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich