Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Frosting and Icing for Efficient Energy Use in Engineering Applications -

Frosting and Icing for Efficient Energy Use in Engineering Applications

Long Zhang, Mengjie Song (Herausgeber)

Buch | Softcover
454 Seiten
2025
Elsevier - Health Sciences Division (Verlag)
978-0-443-15495-9 (ISBN)
CHF 247,90 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Frosting and Icing for Efficient Energy Use in Engineering Applications provides a compendium of innovative case studies for mitigating impacts from frosting and icing on energy. This book first clarifies the mechanisms of frosting and icing, outlining modeling options, and control techniques. Next, a series of experimental examples show the effects of frosting at different scales of energy production, from ambient air vaporizers to wind turbines, and demonstrate how to control these for maximum efficiency. Finally, the mechanisms and mitigation of frosting are examined in a variety of infrastructure scenarios, including sustainable food storage and efficient high-speed railways.

Combining the theoretical fundamentals of frosting and icing with a huge range of real-world case studies, this resource shows how to limit energy loss to these effects in key areas of engineering.

Doctor Long ZHANG is an Assistant Professor in the Department of Energy and Power Engineering at the Beijing Institute of Technology, China. He received his Ph.D. degrees from both The Hong Kong Polytechnic University and Harbin Institute of Technology, China. His research interests are the coupling mechanism and application research of heat and mass transfer and flow, especially the phase change problems such as frosting, icing, and the key technology research of heat pumps. He has published more than 50 SCI journal articles, including 32 ones as lead/corresponding author and 2 ESI ones. He also published 2 books and 2 chapters for Elsevier, applied for 8 Chinese patents, and made 6 invited presentations at international and Chinese conferences around frosting and icing topics. Additionally, he holds more than 10 projects, including the National Natural Science Foundation of China. Mengjie Song is a Professor in the Department of Energy and Power Engineering, as well as a Teli Young Scholar and the Director of the Frost Lab in the School of Mechanical Engineering at the Beijing Institute of Technology, China. He is also the Editor-in-Chief of Recent Patents on Mechanical Engineering (EI, Scopus), Associate Editor of Frontiers in Energy Research (SCI, IF=2.746). He also works as DECRA Research Fellow at the Sustainable Buildings Research Centre (SBRC) in the Faculty of Engineering and Information Sciences at the University of Wollongong, Australia, and as a Guest Professor of Tomas Bata University in the Czech Republic. Prof. Song has worked for over a decade on the mechanism study of heat and mass transfer coupled with flow. On the topic of frosting and defrosting for air source heat pump, he proposed a series of definitions to describe thermophysical phenomena, such as even/uneven frosting/defrosting, and frosting/defrosting evenness value. His current research interests include solidification of water droplets at different scales and (anti-/de)icing for aircraft surface, and frosting and defrosting for a multi-circuit heat exchanger in refrigeration systems. He has published 122 journal articles and participated in projects from China, Hong Kong, Singapore, Japan, and Australia, handling a total of over 17 million yuan in funding, including 12 as PI. Recently, he was selected for the World’s Top 2% Scientists 2021 (Singleyr) list.

Part I: Principles, Modeling, and Control Strategies for Frosting and Icing
1. Introduction
2. Nucleation of water droplets during solidification
3. Droplet condensation and solidification in energy transfer
4. Dropwise condensation freezing and frosting at subzero temperatures
5. A strategy for inhibiting heterogeneous ice nucleation
6. Icing on a cold plate surface in energy equipment
7. A frosting model using the Lattice Boltzmann method
8. A modeling prediction of frosting characteristics in heat exchangers
9. Anti-icing and de-icing technologies based on super hydrophobicity and the photothermal effect for energy efficiency optimization

Part II: Case Studies in Frosting and Icing for Efficient Energy Production
10. Frosting on a cold plate and heat exchanger
11. Frosting in an air source heat pump evaporator
12. High-efficiency frost-free air source heat pumps
13. Sustainable defrosting technologies for air source heat pumps
14. High-efficiency liquefied natural gas ambient air vaporizers under frost conditions
15. Integrating ice detection and mitigation for wind turbine blades
16. High efficiency frost and ice prevention of a power system

Part III: Case Studies in Frosting and Icing for Energy-Efficient Infrastructure
17. Anti- and de-icing of airplanes for energy savings
18. Key technologies of a fluid-heating road snow-melting system
19. Anti-frosting, -icing, and -snowing for high-speed railways
20. Sustainable food freezing and storage technologies
21. Conclusions and future work

Erscheinungsdatum
Verlagsort Philadelphia
Sprache englisch
Maße 191 x 235 mm
Gewicht 450 g
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 0-443-15495-3 / 0443154953
ISBN-13 978-0-443-15495-9 / 9780443154959
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen, Systemtechnik und Analysen ausgeführter Beispiele …

von Holger Watter

Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 55,95
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
CHF 67,20