Vorhersage von Brustkrebs mittels Data Mining (eBook)
61 Seiten
GRIN Verlag
9783346683854 (ISBN)
Einige Paper und Artikel haben sich bereits mit verschiedenen Data Mining Methoden für die Vorhersage von Erkrankungen beschäftigt und diese miteinander verglichen. Kumari et al. verglichen beispielsweise KNN, Logistische Regression und Support Vector Machine miteinander, wobei der KNN die höchste Accuracy erreichte.
Diese Arbeit stellt sich nun ebenfalls die Frage, ob die Genauigkeit bei unterschiedlichen Methoden voneinander abweicht oder sehr ähnlich ist. In dieser Bachelorthesis soll geklärt werden, welche der drei Klassifikatoren, KNN, SVM und Entscheidungsbaum, für die Vorhersage von Brustkrebs am besten geeignet ist. Dabei wird die Genauigkeit (Accuracy) der unterschiedlichen Methoden miteinander verglichen und eine Entscheidung über die Eignung getroffen. Außerdem wird getestet, ob eine anfängliche Feature Selection (Auswahl der relevanten Merkmale) eine Auswirkung auf die Accuracy hat. Die Ergebnisse werden dann im nächsten Schritt mit verwandten Studien verglichen. Für diese Analyse wird das Wisconsin Breast Cancer Dataset der UCI verwendet, das im Internet frei zur Verfügung steht.
| Erscheint lt. Verlag | 28.7.2022 |
|---|---|
| Verlagsort | München |
| Sprache | deutsch |
| Themenwelt | Mathematik / Informatik ► Informatik |
| Technik | |
| Schlagworte | Brustkrebs • Data • Mining • Vorhersage |
| ISBN-13 | 9783346683854 / 9783346683854 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich