Remote Sensing Physics (eBook)
John Wiley & Sons (Verlag)
978-1-119-66902-9 (ISBN)
ADVANCED TEXTBOOK SERIES
Remote Sensing Physics
An Introduction to Observing Earth from Space
The development of spaceborne remote sensing technology has led to a new understanding of the complexity of our planet by allowing us to observe Earth and its environments on spatial and temporal scales that are unavailable to terrestrial sensors.
Remote Sensing Physics: An Introduction to Observing Earth from Space is a graduate-level text that examines the underlying physical principles and techniques used to make remote measurements, along with the algorithms used to extract geophysical information from those measurements.
Volume highlights include:
- Basis for Earth remote sensing including ocean, land, and atmosphere
- Description of satellite orbits relevant for Earth observations
- Physics of passive sensing, including infrared, optical and microwave imagers
- Physics of active sensing, including radars and lidars
- Overview of current and future Earth observation missions
- Compendium of resources including an extensive bibliography
- Sample problem sets and answers available to instructors
The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Rick Chapman, The Johns Hopkins University Applied Physics Laboratory, USA
Richard Gasparovic, The Johns Hopkins University Applied Physics Laboratory (Ret.), USA
An introduction to the physical principles underlying Earth remote sensing. The development of spaceborne remote sensing technology has led to a new understanding of the complexity of our planet by allowing us to observe Earth and its environments on spatial and temporal scales that are unavailable to terrestrial sensors. Remote Sensing Physics: An Introduction to Observing Earth from Space is a graduate-level text that examines the underlying physical principles and techniques used to make remote measurements, along with the algorithms used to extract geophysical information from those measurements. Volume highlights include: Basis for Earth remote sensing including ocean, land, and atmosphere Description of satellite orbits relevant for Earth observations Physics of passive sensing, including infrared, optical and microwave imagers Physics of active sensing, including radars and lidars Overview of current and future Earth observation missions Compendium of resources including an extensive bibliography Sample problem sets and answers available to instructors The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Rick Chapman, The Johns Hopkins University Applied Physics Laboratory, USA Richard Gasparovic, The Johns Hopkins University Applied Physics Laboratory (Ret.), USA
Cover 1
Title Page 5
Copyright 6
Contents 7
Preface 15
Acronyms 17
About the Companion Website 25
Chapter 1 Introduction to Remote Sensing 27
1.1 How Remote Sensing Works 30
References 35
Chapter 2 Satellite Orbits 37
2.1 Computation of Elliptical Orbits 41
2.2 Low Earth Orbits 42
2.3 Geosynchronous Orbits 49
2.4 Molniya Orbit 54
2.5 Satellite Orbit Prediction 55
2.6 Satellite Orbital Trade?offs 55
References 57
Chapter 3 Infrared Sensing 59
3.1 Introduction 59
3.2 Radiometry 60
3.3 Radiometric Sensor Response 63
3.3.1 Derivation 63
3.3.2 Example Sensor Response Calculations 66
3.3.3 Response of a Sensor with a Partially?Filled FOV 66
3.4 Blackbody Radiation 67
3.4.1 Planck's Radiation Law 67
3.4.2 Microwave Blackbody 68
3.4.3 Low?Frequency and High?Frequency Limits 69
3.4.4 Stefan–Boltzmann Law 69
3.4.5 Wein's Displacement Law 70
3.4.6 Emissivity 70
3.4.7 Equivalent Blackbody Temperature 70
3.5 IR Sea Surface Temperature 71
3.5.1 Contributors to Infrared Measurements 71
3.5.2 Correction of Low?Altitude Infrared Measurements 72
3.5.3 Correction of High?Altitude Infrared Measurements 74
3.6 Atmospheric Radiative Transfer 75
3.7 Propagation in Seawater 80
3.8 Smooth Surface Reflectance 84
3.9 Rough Surface Reflectance 86
3.10 Ocean Thermal Boundary Layer 89
3.11 Operational SST Measurements 92
3.11.1 AVHRR Instrument 92
3.11.2 AVHRR Processing 94
3.11.3 AVHRR SST Algorithms 96
3.11.4 Example AVHRR Images 97
3.11.5 VIIRS Instrument 99
3.11.6 SST Accuracy 101
3.11.7 Applications 103
3.12 Land Temperature – Theory 103
3.13 Operational Land Temperature 106
3.14 Terrestrial Evapotranspiration 112
3.15 Geologic Remote Sensing 113
3.15.1 Linear Mixture Theory and Spectral Unmixing 116
3.16 Atmospheric Sounding 117
References 121
Chapter 4 Optical Sensing – Ocean Color 125
4.1 Introduction to Ocean Color 125
4.2 Fresnel Reflection 129
4.3 Skylight 132
4.4 Water?Leaving Radiance 133
4.5 Water Column Reflectance 136
4.5.1 Pure Seawater 138
4.5.2 Case 1 Waters 139
4.5.3 Case 2 Waters 140
4.6 Remote Sensing Reflectance 141
4.7 Ocean Color Data – Case 1 Water 143
4.7.1 Other Uses of Ocean Color 144
4.8 Atmospheric Corrections 145
4.9 Ocean Color Satellite Sensors 150
4.9.1 General History 150
4.9.2 SeaWiFS 152
4.9.3 MODIS 156
4.9.4 VIIRS 159
4.10 Ocean Chlorophyll Fluorescence 161
References 166
Chapter 5 Optical Sensing – Land Surfaces 169
5.1 Introduction 169
5.2 Radiation over a Lambertian Surface 169
5.3 Atmospheric Corrections 173
5.4 Scattering from Vegetation 173
5.5 Normalized Difference Vegetation Index 179
5.6 Vegetation Condition and Temperature Condition Indices 184
5.7 Vegetation Indices from Hyperspectral Data 185
5.8 Landsat Satellites 187
5.9 High?resolution EO sensors 190
5.9.1 Introduction 190
5.9.2 First?Generation Systems 190
5.9.3 Second?Generation Systems 194
5.9.4 Third?Generation Systems 198
5.9.5 Commercial Smallsat Systems 200
References 202
Chapter 6 Microwave Radiometry 205
6.1 Introduction to Microwave Radiometry 205
6.2 Microwave Radiometers 206
6.3 Microwave Radiometry 207
6.3.1 Antenna Pattern 208
6.3.2 Antenna Temperature 210
6.3.3 Examples 211
6.4 Polarization 211
6.4.1 Basic Polarization 211
6.4.2 Jones Vector 213
6.4.3 Stokes Parameters 213
6.5 Passive Microwave Sensing of the Ocean 214
6.5.1 Atmospheric Transmission 215
6.5.2 Seawater Emissivity 215
6.5.3 Fresnel Reflection Coefficients, Emissivity, and Skin Depth 216
6.5.4 Sky Radiometric Temperature 217
6.5.5 Sea Surface Brightness Temperature 219
6.5.6 Wind Direction from Polarization 223
6.6 Satellite Microwave Radiometers 224
6.6.1 SMMR 224
6.6.2 SSM/I and SSMI/S 224
6.6.3 SSM/I Wind Algorithm 226
6.6.4 AMSR?E 229
6.6.5 WindSat 230
6.7 Microwave Radiometry of Sea Ice 233
6.8 Sea Ice Measurements 239
6.9 Microwave Radiometry of Land Surfaces 244
6.10 Atmospheric Sounding 248
References 252
Chapter 7 Radar 255
7.1 Radar Range Equation 255
7.2 Radar Cross?Section 258
7.3 Radar Resolution 262
7.4 Pulse Compression 265
7.5 Types of Radar 270
7.6 Example Terrestrial Radars 271
7.6.1 Weather Radars 271
7.6.2 HF Surface Wave Radar 274
References 275
Chapter 8 Altimeters 277
8.1 Introduction to Altimeters 277
8.2 Specular Scattering 280
8.3 Altimeter Wind Speed 283
8.4 Altimeter Significant Wave Height 286
8.5 Altimeter Sea Surface Height 289
8.5.1 Introduction 289
8.5.2 Pulse?limited vs Beam?limited Altimeter 289
8.5.3 Altimeter Pulse Timing Precision 290
8.5.4 Altimeter Range Corrections 290
8.6 Sea Surface Topography 294
8.7 Measuring Gravity and Bathymetry 300
8.8 Delay?Doppler Altimeter 301
References 304
Chapter 9 Scatterometers 307
9.1 Ocean Waves 307
9.2 Bragg Scattering 313
9.3 RCS Dependence on Wind 317
9.4 Scatterometer Algorithms 319
9.5 Fan?Beam Scatterometers 323
9.6 Conical?Scan Pencil?Beam Scatterometers 326
9.7 Conical?Scan Fan?Beam Scatterometers 330
References 333
Chapter 10 Synthetic Aperture Radar 335
10.1 Introduction to SAR 335
10.2 SAR Azimuth Resolution 339
10.2.1 Doppler Time History 339
10.2.2 Azimuth Extent, Integration Time, and Doppler Bandwidth 342
10.2.3 Azimuth Resolution 342
10.2.4 SAR Timing, Resolution, and Swath Limits 344
10.2.5 The Magic of SAR Exposed 345
10.3 SAR Image Formation and Image Quality 346
10.4 SAR Imaging of Moving Scatterers 348
10.5 Multimode SARs 351
10.6 Polarimetric SAR 352
10.6.1 Polarimetric Response of Canonical Targets 353
10.6.2 Decompositions 354
10.6.3 Compact Polarimetry 355
10.7 SAR Systems 356
10.7.1 Radarsat?1 358
10.7.2 Envisat 360
10.7.3 PALSAR 361
10.7.4 Radarsat?2 361
10.7.5 TerraSAR?X 361
10.7.6 COSMO?SkyMed 361
10.7.7 Sentinel?1 362
10.7.8 Radarsat Constellation Mission (RCM) 363
10.7.9 Military SARs 363
10.8 Advanced SARs 365
10.8.1 Cross?Track Interferometry 365
10.8.2 Along?Track Interferometry 367
10.8.3 Differential Interferometry 370
10.8.4 Tomographic Interferometry 370
10.8.5 High?Resolution, Wide?Swath SAR 370
10.9 SAR Applications 372
10.9.1 SAR Ocean Surface Waves 373
10.9.2 SAR Winds 379
10.9.3 SAR Bathymetry 386
10.9.4 SAR Ocean Internal Waves 390
10.9.5 SAR Sea Ice 396
10.9.6 SAR Oil Slicks and Ship Detection 400
10.9.7 SAR Land Mapping Applications and Distortions 406
10.9.8 SAR Agricultural Applications 412
References 414
Chapter 11 Lidar 419
11.1 Introduction 419
11.2 Types of Lidar 419
11.2.1 Direct vs Coherent Detection 420
11.3 Processes Driving Lidar Returns 421
11.3.1 Elastic Scattering 421
11.3.2 Inelastic Scattering 422
11.3.2 Raman Scattering 422
11.3.2 Brillouin Scattering 423
11.3.3 Fluorescence 423
11.4 Lidar Range Equation 423
11.4.1 Point Scattering Target 423
11.4.2 Lambertian Surface 424
11.4.3 Elastic Volume Scattering 424
11.4.4 Bathymetric Lidar 424
11.5 Lidar Receiver Types 426
11.5.1 Linear (full waveform) Lidar 426
11.5.2 Single Photon Lidar 427
11.6 Lidar Altimetry 428
11.6.1 NASA Airborne Topographic Mapper 428
11.6.2 Space?Based Lidar Altimeters (IceSat?1 & 2)
11.6.3 Bathymetric Lidar 431
11.7 Lidar Atmospheric Sensing 431
11.7.1 ADM?Aeolus 431
11.7.2 NASA CALIOP 434
References 437
Chapter 12 Other Remote Sensing and Future Missions 439
12.1 Other Types of Remote Sensing 439
12.1.1 GRACE 439
12.1.2 Limb Sounding 440
12.2 Future Missions 440
12.2.1 NASA Missions 441
12.2.2 ESA Missions 442
12.2.3 Summary 444
References 445
Chapter A Constants 447
Chapter B Definitions of Common Angles 449
Chapter C Example Radiometric Calculations 453
Chapter D Optical Sensors 459
D.1 Example Optical Sensors 461
D.1.1 Photodiodes 461
D.1.2 Charge?Coupled Devices 463
D.1.3 CMOS Image Sensors 465
D.1.4 Bolometers and Microbolometers 466
D.2 Optical Sensor Design Examples 468
D.2.1 Computing Exposure Times 468
D.2.2 Impact of Digitization and Shot Noise on Contrast Detection 470
References 471
Chapter E Radar Design Example 473
Chapter F Remote Sensing Resources on the Internet 481
F.1 Information and Tutorials 481
F.2 Data 481
F.3 Data Processing Tools 482
F.4 Satellite and Sensor Databases 482
F.5 Other 482
Chapter G Useful Trigonometric Identities 483
Index 485
EULA 499
| Erscheint lt. Verlag | 10.2.2022 |
|---|---|
| Reihe/Serie | AGU Advanced Textbooks | AGU Advanced Textbooks |
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Geowissenschaften ► Geologie |
| Technik ► Elektrotechnik / Energietechnik | |
| Schlagworte | earth sciences • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Fernerkundung • Geologie u. Geophysik • Geology & Geophysics • Geophysik • Geowissenschaften • GIS & Remote Sensing • GIS u. Fernerkundung • Satellite communications • Satellitenkommunikation |
| ISBN-10 | 1-119-66902-2 / 1119669022 |
| ISBN-13 | 978-1-119-66902-9 / 9781119669029 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich