Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Introduction to Nanoscience and Nanotechnology (eBook)

(Autor)

eBook Download: EPUB
2021 | 2. Auflage
416 Seiten
Wiley (Verlag)
978-1-119-17225-3 (ISBN)

Lese- und Medienproben

Introduction to Nanoscience and Nanotechnology -  Chris Binns
Systemvoraussetzungen
84,99 inkl. MwSt
(CHF 82,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The book presents nanoscience and nanotechnology to a broad audience that does not necessarily have a scientific background. This book starts with the fundamental physicochemical properties of nanoparticles and nanostructures, and discusses how these special properties can be manipulated to produce high-performance materials and devices. In the following chapters, the scope is broadened to cover naturally occurring nanoparticles and artificially-engineered carbon nanoparticles, their mechanical properties, and their importance to the rest of nanotechnology. The book also covers the two design ideologies for manufacturing nanostructures, the bottom-up and top-down methods, and discusses how these two can be combined to allow for the imaging, probing and manipulation of nanostructures. The remainder of the book surveys the current state of nanotechnology, including the use of single-nanoparticle devices in data storage, electronics, optics, and solar power; advances in nanoparticle manufacturing and biotechnology that can lead to powerful new cancer treatments; and the use of nanotechnology to study the 'quantum vacuum'.
Explore foundational and advanced topics in nanoscience with this intuitive introduction In the newly revised Second Edition of Introduction to Nanoscience and Nanotechnology, renowned researcher Dr. Chris Binns delivers an accessible and broad-based treatment of nanoscience and nanotechnology. Beginning with the fundamental physicochemical properties of nanoparticles and nanostructures, the book moves on to discuss how these properties can be exploited to produce high-performance materials and devices. Following chapters explore naturally occurring nanoparticles and artificially engineered carbon nanoparticles, their mechanical properties, and their applications in nanotechnological science. Both design ideologies for manufacturing nanostructures bottom-up and top-down are examined, as is the idea that the two methodologies can be combined to allow for the imaging, probing, and manipulation of nanostructures. A survey of the current state of nanotechnology rounds out the text and introduces the reader to a variety of novel and exciting applications of nanoscience. The book also includes: A thorough introduction to the importance and impact of particle size on the magnetic, mechanical, and chemical properties of materials Comprehensive explorations of carbon nanostructures, including bucky balls and nanotubes, and single-nanoparticle devices Practical discussions of colloids and nanoscale interfaces, as well as nanomechanics and nanofluidics In-depth examinations of the medical applications of functional nanoparticles, including the treatment of tumors by hyperthermia and medical diagnosis Perfect for senior undergraduate and graduate students in materials science and engineering, Introduction to Nanoscience and Nanotechnology will also earn a place in the libraries of early-career and established researchers with professional or personal interests in nanoscience and nanotechnology.

Chris Binns, PhD, is Beatriz Gallindo Professor at the University of Castilla-La Mancha, Spain and Professor of Nanoscience in the Department of Physics and Astronomy at the University of Leicester, United Kingdom. His research is most recently focused on magnetic nanoparticles and their biomedical applications.

Introduction to Second Edition


It has been 11 years since the first edition of this book was published, and in such a rapidly evolving field it is important to provide an updated report of the current state of affairs. Of course, the basic science has not changed, but in the last 11 years there has been a number of noteworthy developments in the basic tools and materials of nanotechnology and further penetration into commercially available materials and devices. An example is the entirely new branch of nanotechnology that has developed around graphene, which is a single atomic layer of carbon. This material was mentioned in passing in the first edition, but in the intervening 11 years has become a major research field. In this edition, as well as providing an update for the previous work, there are additional chapters describing developments in the research on graphene, nanobubbles, nanofluidics, and nanoscale interfaces. These are all topics that provide additional linkages between the various scientific disciplines that merge to form nanoscience.

World‐wide funding of research in nanotechnology continues to grow. The figure quoted in the first edition for government funding alone was four billion dollars, but the latest available forecast [1] predicts a global nanotechnology market of 125 billion dollars by 2024, a compound annual growth of 28% over the 14 years. As the nanotechnology industry has grown, it has become more appropriate to count the total market as opposed to just government spending, which dominated the figures back in 2010. It is interesting to note that the first edition predicted an annual growth of 20%, which is proving to be an underestimate.

It is clear that nanotechnology is expected to have a significant impact on our lives, so what is it and what does it do? These simple direct questions, unfortunately, do not have simple direct answers, and it very much depends on who you ask. There are thousands of researchers in nanotechnology in the world and one suspects that one would get thousands of different responses. A definition that would probably offend the smallest number of researchers is that, nanotechnology is the study and the manipulation of matter at length scales of the order of a few nanometers (100 atoms or so) to produce useful materials and devices.

This still leaves a lot of room for maneuver. A nanotechnologist working in the cosmetics industry might tell you that it is achieving better control of tiny particles, a few nanometers across (nanoparticles) so that sunscreens or cosmetic creams achieve a smoother distribution over the skin. A scientist working at the so‐called “life sciences interface” might say that it is finding ways of targeting magnetic nanoparticles to tumors in the body in the development of revolutionary cancer treatments. A researcher working on graphene‐based molecular electronics would tell you that it is creating electronic circuits in which the active components are a thousand times smaller than a single transistor on a Pentium IV chip. Some nanotechnologists (a small minority) would also suggest you that it is finding ways to build tiny robots whose components are the size of molecules (nanobots).

We will talk in detail about size scales in Chapter 1, but for the moment consider Figure I.1, which shows, schematically, the size scale of interest in nanotechnology (The Nanoworld) with sizes plotted on a logarithmic scale. For reasons that will become clear in Chapter 1, the upper edge of the Nanoworld is set at about 100 nm. Even though this is hundreds of times smaller than the tiniest mote you can see with your eyes, and is smaller than anything that can be resolved by the most powerful optical microscope, a chunk of matter this size or bigger can be considered to be a “chip off the old block.” That is, a very tiny piece of ordinary material. If we were to assemble pieces of copper or iron this big into a large chunk, the resulting block would behave exactly as we would expect for the bulk material. Thus, nanotechnology does not consider pieces of matter larger than about 100 nm to be useful building blocks.

As shown in Figure I.1, viruses are small enough to be inhabitants of the nanoworld whereas bacteria are much larger, being typically over 10 μm (10 000 nm) in size, though they are packed with “machinery” that falls into the size range of the nanoworld (see Chapter 8, Section 8.1.5.3). Going down in size, the figure shows typical sizes of metal particles, containing ~1000 atoms and bucky balls containing ~100 atoms that can be used to produce advanced materials. The properties of these (per atom) deviate significantly from the bulk material, and so assembling these into macroscopic chunks produces materials with novel behavior. Finally, the lower edge of the nanoworld is defined by the size of single atoms, whose diameters vary from 0.1 (hydrogen atom) to about 0.4 nm (uranium atom). We cannot build materials or devices with building blocks smaller than atoms and so these represent the smallest structures that can be used in nanotechnology.

There are so many aspects to nanotechnology that one of the difficulties in writing about it is finding ways to organize the description into a coherent structure. This book will largely follow a classification scheme introduced by Richard Jones in his book Soft Machines [2] that helps to categorize nanotechnology into a logical framework. He defines three categories in order of increasing sophistication, that is, Incremental, Evolutionary and Radical nanotechnology. These are described below.

Figure I.1 The nanoworld. The size range of interest in nanotechnology and some representative objects.

Source: Reproduced under Creative Commons license CC BY‐SA 3.0.

I.1 Incremental Nanotechnology


All substances, even solid chunks of metal, have a grain structure and controlling this grain structure allows one to produce higher performance materials. This could mean stronger metals, magnetic films with a very high magnetization, suspensions of nanoparticles with tailored properties, etc. There are aspects of incremental nanotechnology that date back to the ancients, for example, the invention of Indian ink, probably in China around 2700 BCE, which arose from the production of carbon nanoparticles in water. Also, medieval potters in Europe knew how to produce a luster on pots by coating them with copper and silver nanoparticles [3], a process that can be traced back to ninth century AD Mesopotamia. Figure I.2 shows an electron microscope image of the glaze of a sixteenth century Italian pot, whose luster derives from the coating by 10 nm diameter copper particles.

Most modern nanotechnologists would be proud of the size control of the particles in this picture. Whereas these days a process that involved nanoparticles such as this would be proudly claimed to be nanotechnology, and thus, open the door to research funding, spin‐off companies, etc. The ancients were developing processes that did something invisible to the materials, but nevertheless allowed them to achieve visible changes. In this sense, a lot of incremental nanotechnology can sometimes be considered to be a re‐branding of other more traditional lines of research such as materials science. The nanotechnology title is still useful, however, since nanotechnology is, by its nature, multi‐disciplinary and it encourages cross‐disciplinary communication between researchers.

The aspect of incremental nanotechnology that has really changed in the modern world is the development of instruments (see Chapter 5) that can probe at the nanoscale and image the particles within materials or devices. Researchers can actually observe what is happening to the particles or grains in response to changes in processing. This not only makes development of new processes more efficient, but also leads to the discovery of completely new structures that were not known to exist and hence new applications. Nature is full of surprises when one studies sufficiently, small pieces of matter, as will be come clear throughout this book.

Figure I.2 Ancient incremental nanotechnology. Copper nanocrystals of about 10 nm in diameter on a tenth century pot, which produce a surface luster. The inset shows an increased magnification image of a single 7 nm diameter particle with atomic planes visible revealing its crystallinity.

Source: Reproduced with permission from [3].

I.2 Evolutionary Nanotechnology


Whereas Incremental Nanotechnology is the business of assembling vast numbers of very tiny particles to produce novel substances, Evolutionary Nanotechnology attempts to produce nanoparticles that individually perform some kind of useful function. They may need to be assembled in vast numbers to form a macroscopic array in order to build a device, but a functionality is built into each one. Such nanoparticles are necessarily more complex than those used in incremental nanotechnology, and will often consist of more than one material and have a surface coating of organic molecules.

An example of a single nanoparticle device is a single‐electron transistor (SET), that uses a phenomenon known as “Coulomb blockade” to effect transistor action on individual electrons (see...

Erscheint lt. Verlag 13.10.2021
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • MEMS • Mikroelektromechanik • Nanomaterialien • nanomaterials • Nanotechnologie • nanotechnology
ISBN-10 1-119-17225-X / 111917225X
ISBN-13 978-1-119-17225-3 / 9781119172253
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 63,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15