Spacecraft Lithium-Ion Battery Power Systems
Wiley-IEEE Press (Verlag)
978-1-119-77214-9 (ISBN)
Written by highly experienced spacecraft engineers and scientists working at the forefront of the aerospace industry, Spacecraft Lithium-Ion Battery Power Systems is one of the first books to provide a comprehensive treatment of the broad area of spacecraft lithium-ion battery (LIB) power systems technology. The work emphasizes the technical aspects across the entire lifecycle of spacecraft LIBs including the requirements, design, manufacturing, testing, and safety engineering principles needed to deploy a reliable spacecraft LIB-based electrical power system.
A special focus on rechargeable LIB technologies as they apply to unmanned and crewed Earth-orbiting satellites, planetary mission spacecraft (such as orbiters, landers, rovers and probes), launch vehicle, and astronaut spacesuit applications is emphasized. Using a system’s engineering approach, the book bridges knowledge gaps that typically exist between academic and industry practitioners. Key topics of discussion and learning resources include:
Detailed systematic technical treatment of spacecraft LIB-based electrical power systems across the entire LIB lifecycle
Principles of lithium-ion cell and battery design and test, LIB sizing, battery management systems, electrical power systems, safety engineering, ground and launch-site processing, and on-orbit mission operations
Special topics such as requirements engineering, qualification testing, thermal runaway hazards, dead bus events, life cycle testing and prediction analyses, on-orbit LIB power system management, and spacecraft EPS passivation strategies
Comprehensive discussion of on-orbit and emerging space applications of LIBs supporting various commercial, civil, and government spacecraft missions such as International Space Station, Galileo, James Webb Telescope, Mars 2020 Perseverance Rover, Europa Clipper, Cubesats, and more
Overall, the work provides professionals supporting all aspects of the aerospace marketplace with key knowledge and highly actionable information pertaining to LIBs and their specific applications in modern spacecraft systems.
Thomas P. Barrera (President, LIB-X Consulting) has a PhD in Chemical Engineering from the University of California, Los Angeles (UCLA), CA, USA. He is the Founder of LIB-X Consulting, a private technical consulting firm specializing in lithium-ion battery power system engineering. Previously, he was a Technical Fellow at The Boeing Co., El Segundo, CA, USA, leading commercial and government satellite product line development.
About the Editor xvii
About the Contributors xix
List of Reviewers xxiii
Foreword by Albert H. Zimmerman and Ralph E. White xxv
Preface xxvii
Acronyms and Abbreviations xxix
1 Introduction 1
Thomas P. Barrera
1.1 Introduction 1
1.2 Purpose 1
1.2.1 Background 2
1.2.2 Knowledge Management 2
1.3 History of Spacecraft Batteries 3
1.3.1 The Early Years – 1957 to 1975 3
1.3.1.1 Silver- Zinc 4
1.3.1.2 Silver- Cadmium 4
1.3.1.3 Nickel- Cadmium 5
1.3.2 The Next Generation – 1975 to 2000 5
1.3.2.1 Nickel- Hydrogen 6
1.3.2.2 Sodium- Sulfur 7
1.3.2.3 Transition to Lithium- Ion 7
1.3.3 The Li- ion Revolution – 2000 to Present 8
1.3.3.1 First Space Applications 8
1.3.3.2 Advantages and Disadvantages 10
1.4 State of Practice 11
1.4.1 Raw Materials Supply Chain 11
1.4.2 COTS and Custom Li- ion Cells 12
1.4.3 Hazard Safety and Controls 12
1.4.4 Acquisition Strategies 13
1.5 About the Book 13
1.5.1 Organization 14
1.5.2 Li- ion Cells and Batteries 14
1.5.3 Electrical Power System 14
1.5.4 On- Orbit LIB Experience 15
1.5.5 Safety and Reliability 15
1.5.6 Life Cycle Testing 15
1.5.7 Ground Processing and Mission Operations 15
1.6 Summary 16
References 16
2 Space Lithium- Ion Cells 19
Yannick Borthomieu, Marshall C. Smart, Sara Thwaite, Ratnakumar V. Bugga, and Thomas P. Barrera
2.1 Introduction 19
2.1.1 Types of Space Battery Cells 19
2.1.2 Rechargeable Space Cells 20
2.1.3 Non- Rechargeable Space Cells 20
2.1.4 Specialty Reserve Space Cells 21
2.2 Definitions 22
2.2.1 Capacity 22
2.2.2 Energy 23
2.2.3 Depth- of- Discharge 23
2.3 Cell Components 24
2.3.1 Positive Electrode 24
2.3.1.1 Lithium Cobalt Oxide 25
2.3.1.2 Lithium Nickel Cobalt Aluminum Oxide 25
2.3.1.3 Lithium Nickel Manganese Cobalt Oxide 25
2.3.1.4 Lithium Manganese Oxide 25
2.3.1.5 Lithium Iron Phosphate 26
2.3.2 Negative Electrode 26
2.3.2.1 Solid Electrolyte Interphase 26
2.3.2.2 Coke 27
2.3.2.3 Hard Carbon 27
2.3.2.4 Graphite 27
2.3.2.5 Mesocarbon Microbead 27
2.3.2.6 Si- C Composites 28
2.3.2.7 Low- Voltage Resilience 28
2.3.3 Electrolytes 28
2.3.3.1 Room Temperature Electrolytes 28
2.3.3.2 Low- Temperature Electrolytes 29
2.3.4 Separators 30
2.3.5 Safety Devices 31
2.3.5.1 Pressure Vents 31
2.3.5.2 Current Interrupt Devices 32
2.3.5.3 Positive Temperature Coefficient 33
2.3.5.4 Shutdown Separator 33
2.4 Cell Geometry 33
2.4.1 Standardization 34
2.4.2 Cylindrical 34
2.4.3 Prismatic 35
2.4.4 Elliptical–Cylindrical 35
2.4.5 Pouch 35
2.5 Cell Requirements 36
2.5.1 Specification 36
2.5.2 Capacity and Energy 36
2.5.3 Operating Voltage 37
2.5.4 Mass and Volume 37
2.5.5 dc Resistance 37
2.5.6 Self- Discharge Rate 37
2.5.7 Environments 38
2.5.7.1 Operating and Storage Temperature 38
2.5.7.2 Vibration, Shock, and Acceleration 38
2.5.7.3 Thermal Vacuum 39
2.5.7.4 Radiation 39
2.5.8 Lifetime 39
2.5.9 Cycle Life 39
2.5.10 Safety and Reliability 40
2.6 Cell Performance Characteristics 40
2.6.1 Charge and Discharge Voltage 40
2.6.2 Capacity 41
2.6.3 Energy 42
2.6.4 Internal Resistance 42
2.6.5 Depth of Discharge 43
2.6.6 Life Cycle 44
2.7 Cell Qualification Testing 46
2.7.1 Test Descriptions 46
2.7.1.1 Electrical 46
2.7.1.2 Environmental 47
2.7.1.3 Safety 48
2.7.1.4 Life- Cycle Testing 48
2.8 Cell Screening and Acceptance Testing 49
2.8.1 Screening 49
2.8.2 Lot Definition 50
2.8.3 Acceptance Testing 50
2.9 Summary 52
Acknowledgments 52
References 53
3 Space Lithium- Ion Batteries 59
Sara Thwaite, Marshall C. Smart, Eloi Klein, Ratnakumar V. Bugga, Aakesh Datta, Yannick Borthomieu, and Thomas P. Barrera
3.1 Introduction 59
3.2 Requirements 59
3.2.1 Battery Requirements Specification 60
3.2.2 Statement of Work 61
3.2.3 Voltage 62
3.2.4 Capacity 62
3.2.5 Mass and Volume 62
3.2.6 Cycle Life 63
3.2.7 Environments 63
3.3 Cell Selection and Matching 63
3.3.1 Selection Methodologies 64
3.3.2 Matching Process 64
3.4 Mission- Specific Characteristics 64
3.4.1 LIB Sizing 65
3.4.2 GEO Missions 65
3.4.3 LEO Missions 67
3.4.4 MEO and HEO Missions 69
3.4.5 Lagrange Orbit Missions 69
3.5 Interfaces 70
3.5.1 Electrical 70
3.5.2 Mechanical 70
3.5.3 Thermal 70
3.6 Battery Design 71
3.6.1 Electrical 71
3.6.1.1 S- P and P- S Design 72
3.6.1.2 Analysis 75
3.6.2 Mechanical 75
3.6.2.1 Packaging 76
3.6.2.2 Structural Mechanical Analysis 76
3.6.3 Thermal 77
3.6.3.1 Design 78
3.6.3.2 Analysis 79
3.6.4 Materials, Parts, and Processes 80
3.6.4.1 Parts 81
3.6.4.2 Cleanliness 81
3.6.5 Safety and Reliability 82
3.6.5.1 Human- Rated and Unmanned Missions 82
3.6.5.2 Safety Features and Devices 83
3.7 Battery Testing 84
3.7.1 Test Requirements and Planning 84
3.7.2 Test Articles and Events 85
3.7.3 Qualification Test Descriptions 86
3.7.3.1 Capacity 86
3.7.3.2 Resistance 87
3.7.3.3 Charge Retention 88
3.7.3.4 Vibration 88
3.7.3.5 Shock 89
3.7.3.6 Thermal Cycle 89
3.7.3.7 Thermal Vacuum 90
3.7.3.8 Electromagnetic Compatibility 91
3.7.3.9 Life Cycle 92
3.7.3.10 Safety 93
3.7.4 Acceptance Test Descriptions 93
3.8 Supply Chain 94
3.8.1 Battery Parts and Materials 94
3.8.2 Space LIB Suppliers 94
3.9 Summary 94
References 95
4 Spacecraft Electrical Power Systems 99
Thomas P. Barrera
4.1 Introduction 99
4.2 EPS Functional Description 101
4.2.1 Power Generation 101
4.2.2 Energy Storage 102
4.2.3 Power Management and Distribution 102
4.2.4 Harness 103
4.3 EPS Requirements 103
4.3.1 Requirements Specification 104
4.3.2 Orbital Mission Profile 105
4.3.3 Power Capability 106
4.3.4 Mission Lifetime 106
4.4 EPS Architecture 106
4.4.1 Bus Voltage 107
4.4.2 Direct Energy Transfer 108
4.4.2.1 Unregulated Bus 108
4.4.2.2 Partially- Regulated Bus 108
4.4.2.3 Fully- Regulated Bus 109
4.4.3 Peak- Power Tracker 109
4.4.4 Direct Energy Transfer and Peak- Power Tracker Trades 110
4.5 Battery Management Systems 111
4.5.1 Autonomy 111
4.5.2 Battery Charge Management 111
4.5.3 Battery Cell Voltage Balancing 112
4.5.3.1 Passive Cell Balancing 113
4.5.3.2 Active Cell Balancing 114
4.5.4 EPS Telemetry 114
4.6 Dead Bus Events 114
4.6.1 Orbital Considerations 115
4.6.2 Survival Fundamentals 115
4.7 EPS Analysis 115
4.7.1 Energy Balance 116
4.7.2 Power Budget 116
4.7.2.1 Inputs 118
4.7.2.2 Outputs 118
4.8 EPS Testing 119
4.8.1 Assembly, Integration, and Test 119
4.8.2 Bus Integration 120
4.8.3 Functional Test 121
4.9 Summary 122
References 122
5 Earth- Orbiting Satellite Batteries 125
Penni J. Dalton, Eloi Klein, David Curzon, Samuel P. Russell, Keith Chin, David J. Reuter, and Thomas P. Barrera
5.1 Introduction 125
5.2 Earth Orbit Battery Requirements 126
5.3 NASA International Space Station – LEO 127
5.3.1 Introduction 127
5.3.2 Electrical Power System 127
5.3.3 Ni- H 2 Battery Heritage 128
5.3.4 Transition to Lithium- Ion Battery Power Systems 129
5.4 NASA Goddard Space Flight Center Spacecraft 130
5.4.1 Introduction 130
5.4.2 Solar Dynamics Observatory – GEO 131
5.4.3 Lunar Reconnaissance Orbiter – Lunar 133
5.4.4 Global Precipitation Measurement – LEO 133
5.5 Van Allen Probes – HEO 134
5.5.1 Mission Objectives 134
5.5.2 Electrical Power System 134
5.5.3 LIB Architecture 135
5.6 GOES Communication Satellites – GEO 136
5.6.1 Mission Objectives 136
5.6.2 Battery Heritage 136
5.6.3 LIB and Power System Architecture 136
5.7 James Webb Space Telescope – Earth–Sun Lagrange Point 2 137
5.7.1 Mission Objectives 137
5.7.2 Lagrange Orbit 138
5.7.3 Electrical Power System 138
5.7.4 LIB Architecture 139
5.8 CubeSats – LEO 140
5.8.1 Introduction 140
5.8.2 Electrical Power System and Battery Architecture 141
5.8.3 Advanced Hybrid EPS Systems 142
5.9 European Space Agency Spacecraft 143
5.9.1 Introduction 143
5.9.2 Sentinel- 1 Mission Objectives 143
5.9.3 Galileo Mission Objectives – MEO 144
5.10 NASA Astronaut Battery Systems 146
5.10.1 Introduction 146
5.10.2 EMU Long- Life Battery 146
5.10.3 Lithium- Ion Rechargeable EVA Battery Assembly 147
5.10.4 Lithium- Ion Pistol- Grip Tool Battery 148
5.10.5 Simplified Aid for EVA Rescue 149
5.11 Summary 151
Acknowledgment 151
References 151
6 Planetary Spacecraft Batteries 155
Marshall C. Smart and Ratnakumar V. Bugga
6.1 Introduction 155
6.2 Planetary Mission Battery Requirements 155
6.2.1 Service Life and Reliability 156
6.2.2 Radiation Tolerance 156
6.2.3 Extreme Temperature 156
6.2.4 Low Magnetic Signature 157
6.2.5 Mechanical Environments 157
6.2.6 Planetary Protection 157
6.3 Planetary and Space Exploration Missions 158
6.3.1 Earth Orbiters 158
6.3.2 Lunar Missions 158
6.3.2.1 Gravity Recovery and Interior Laboratory 159
6.3.2.2 Lunar Crater Observation and Sensing Satellite 159
6.3.3 Mars Missions 159
6.3.3.1 Mars Orbiters 160
6.3.3.2 Mars Landers 161
6.3.3.3 Mars Rovers 166
6.3.3.4 Mars Helicopters, CubeSats, and Penetrators 174
6.3.4 Missions to Jupiter 177
6.3.4.1 NASA Juno Mission 177
6.3.5 Missions to Comets and Asteroids 179
6.3.5.1 Hayabusa (MUSES- C) 179
6.3.5.2 ESA Rosetta Lander Philae 180
6.3.5.3 NASA OSIRIS- REx Mission 180
6.3.6 Missions to Deep Space and Outer Planets 180
6.4 Future Missions 180
6.4.1 The Planned NASA Europa Clipper Mission 181
6.4.2 ESA JUICE Mission 183
6.5 Mars Sample Return Missions 183
6.6 Summary 184
Acknowledgment 184
References 184
7 Space Battery Safety and Reliability 189
Thomas P. Barrera and Eric C. Darcy
7.1 Introduction 189
7.1.1 Space Battery Safety 189
7.1.2 Industry Lessons Learned 190
7.2 Space LIB Safety Requirements 191
7.2.1 Nasa Jsc- 20793 192
7.2.2 Range Safety 192
7.2.3 Design for Minimum Risk 193
7.3 Safety Hazards, Controls, and Testing 193
7.3.1 Electrical 194
7.3.1.1 Overcharge 194
7.3.1.2 Overdischarge 194
7.3.1.3 External Short Circuit 195
7.3.1.4 Internal Short Circuit 195
7.3.2 Mechanical 196
7.3.3 Thermal 196
7.3.3.1 Overtemperature 197
7.3.3.2 Low Temperature 198
7.3.4 Chemical 198
7.3.5 Safety Testing 199
7.4 Thermal Runaway 200
7.4.1 Likelihood and Severity 200
7.4.2 Characterization 201
7.4.3 Testing 202
7.4.3.1 Single Cell 202
7.4.3.2 Module and Battery 204
7.5 Principles of Safe- by- Design 204
7.5.1 Field Failures Due to ISCs 204
7.5.2 Cell Design 205
7.5.3 Cell Manufacturing and Quality Audits 205
7.5.4 Cell Testing and Operation 206
7.6 Passive Propagation Resistant LIB Design 207
7.6.1 PPR Design Guidelines 207
7.6.1.1 Control of Side Wall Rupture 207
7.6.1.2 Cell Spacing and Heat Dissipation 208
7.6.1.3 Current- Limiting Cells 208
7.6.1.4 Ejecta Path 208
7.6.1.5 Flame Suppression 208
7.6.2 PPR Verification 209
7.6.2.1 Trigger Cell Selection 209
7.6.2.2 PPR LIB Unit Design and Manufacturing 210
7.6.2.3 PPR LIB Test Execution 210
7.6.2.4 Post- Test Analysis and Reporting 211
7.6.3 Case Study – NASA US Astronaut Spacesuit LIB Redesign 211
7.7 Battery Reliability 215
7.7.1 Requirements 215
7.7.1.1 Battery Reliability Analysis 215
7.7.1.2 Hazard Analysis 216
7.7.2 Battery Failure Rates 217
7.7.2.1 Failure Rate in Time 217
7.7.2.2 Failure Rate Characteristics 218
7.8 Summary 218
References 219
8 Life- Cycle Testing and Analysis 225
Samuel Stuart, Shriram Santhanagopalan, and Lloyd Zilch
8.1 Introduction 225
8.1.1 Test- Like- You- Fly 225
8.1.2 Design of Test 226
8.1.3 Test Article Selection 226
8.1.4 Personnel, Equipment, and Facilities 227
8.2 LCT Planning 228
8.2.1 Test Plan 228
8.2.2 Test Procedures 228
8.2.3 Test Readiness Review 229
8.2.4 Sample Size Statistics 229
8.3 Charge and Discharge Test Conditions 229
8.3.1 Charge and Discharge Rates 229
8.3.2 Capacity and DOD 230
8.3.3 Voltage Limits 230
8.3.4 Charge and Discharge Control 230
8.3.5 Parameter Margin 231
8.4 Test Configuration and Environments 231
8.4.1 Test Article Configuration 231
8.4.2 Test Environments 232
8.4.2.1 Temperature Controlled Chambers 232
8.4.2.2 Thermal Vacuum Chambers 232
8.4.2.3 Cold Plates 233
8.5 Test Equipment and Safety Hazards 233
8.5.1 Test Equipment Configuration 234
8.5.1.1 Hardware 234
8.5.1.2 Software 235
8.5.2 Test Safety Hazards 236
8.5.2.1 Test Articles 237
8.5.2.2 Equipment Induced 238
8.5.2.3 Laboratory Induced 238
8.5.2.4 Test Control Mitigations 239
8.5.2.5 Physical Mitigations 239
8.6 Real- Time Life- Cycle Testing 239
8.6.1 Test Article Selection 240
8.6.2 Test Execution and Monitoring 240
8.6.3 LCT End- of- Life Management 240
8.7 Calendar and Storage Life Testing 241
8.7.1 Calendar Life 241
8.7.2 Storage Life 241
8.7.3 Test Methodology 242
8.8 Accelerated Life- Cycle Testing 242
8.8.1 Accelerated Life Test Methodologies 242
8.8.2 Lessons Learned 243
8.9 Data Analysis 244
8.9.1 LCT Data Analysis 244
8.9.2 Trend Analysis and Reporting 245
8.10 Modeling and Simulation 246
8.10.1 Modeling and Simulation in Battery- Life Testing 247
8.10.2 Empirical Approaches 248
8.10.3 First Principles of Physics- Based Models 249
8.10.4 Systems Engineering Models 249
8.10.5 Models for Tracking Test Progress 250
8.10.6 Parameterization Approaches 252
8.10.7 Data Requirements 252
8.10.8 Lifetime and Performance Prediction 253
8.11 Summary 255
References 255
9 Ground Processing and Mission Operations 257
Steven E. Core, Scott Hull, and Thomas P. Barrera
9.1 Introduction 257
9.1.1 Satellite Systems Engineering 257
9.1.2 Ground and Space Satellite EPS Requirements 258
9.2 Ground Processing 258
9.2.1 Storage 258
9.2.2 Transportation and Handling 259
9.3 Launch Site Operations 260
9.3.1 Launch Site Processing 260
9.3.2 Pre- Launch Operations 263
9.3.3 Launch Operations 264
9.4 Mission Operations 264
9.4.1 GEO Transfer Orbit 265
9.4.2 GEO On- Station Operations 266
9.4.3 On- Orbit Maintenance Operations 267
9.4.4 Contingency Operations 269
9.4.4.1 Safe Mode 269
9.4.4.2 Dead Bus Survival 270
9.4.4.3 Dead Bus Recovery 270
9.4.5 End- of- Life Operations 271
9.5 End- of- Mission Operations 272
9.5.1 Satellite Disposal Operations 273
9.5.1.1 LEO Disposal Operations 273
9.5.1.2 GEO Disposal Operations 274
9.5.2 Passivation Requirements 274
9.5.2.1 United States Passivation Guidance 275
9.5.2.2 International Passivation Guidance 276
9.5.3 Satellite EPS Passivation Operations 276
9.5.3.1 Hard Passivation Operations 277
9.5.3.2 Soft Passivation Operations 278
9.5.3.3 lv Orbital Stage EPS Passivation Operations 279
9.6 Summary 279
References 280
Appendix A: Terms and Definitions 283
Index 293
Erscheinungsdatum | 29.12.2022 |
---|---|
Reihe/Serie | IEEE Press |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 907 g |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
ISBN-10 | 1-119-77214-1 / 1119772141 |
ISBN-13 | 978-1-119-77214-9 / 9781119772149 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich