Self-Learning Condition Monitoring for Smart Electrohydraulic Drives
Seiten
- Keine Verlagsinformationen verfügbar
- Artikel merken
The thesis deals with the task of monitoring the hydraulic drives conditions in order to detect faults and hence, aims to enhance their robustness and availability.The focus of the work lay on the fluid related problems, and the analysis is performed from the mechatronic point of view.
Methodologies were investigated with emphasis on the economic and practical aspects for in-field applications. A novel approach is suggested based on the unsupervised paradigm of machine learning algorithms.
Finally, the applicability of the approach in early, intermediate and advanced fault situations, is examined.
Methodologies were investigated with emphasis on the economic and practical aspects for in-field applications. A novel approach is suggested based on the unsupervised paradigm of machine learning algorithms.
Finally, the applicability of the approach in early, intermediate and advanced fault situations, is examined.
| Erscheinungsdatum | 27.05.2020 |
|---|---|
| Reihe/Serie | Fluidmechatronische Systeme |
| Verlagsort | Düren |
| Sprache | englisch |
| Maße | 148 x 210 mm |
| Gewicht | 281 g |
| Themenwelt | Technik ► Maschinenbau |
| Schlagworte | Condition Montroing • Fluidmechatronische Systemtechnik • Fluid Power • Hydraulics • Mechatronics |
| ISBN-10 | 3-8440-7383-3 / 3844073833 |
| ISBN-13 | 978-3-8440-7383-6 / 9783844073836 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 46,15
Lösungshinweise, Ergebnisse und ausführliche Lösungen
Buch | Softcover (2025)
Springer Fachmedien Wiesbaden GmbH (Verlag)
CHF 41,95
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 39,15