Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Chemical Technology (eBook)

From Principles to Products
eBook Download: PDF
2019 | 2. Auflage
Wiley-VCH Verlag GmbH & Co. KGaA
978-3-527-81564-7 (ISBN)

Lese- und Medienproben

Chemical Technology - Andreas Jess, Peter Wasserscheid
Systemvoraussetzungen
93,99 inkl. MwSt
(CHF 89,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A fully updated edition of a popular textbook covering the four disciplines of chemical technology?featuring new developments in the field

Clear and thorough throughout, this textbook covers the major sub-disciplines of modern chemical technology?chemistry, thermal and mechanical unit operations, chemical reaction engineering, and general chemical technology?alongside raw materials, energy sources and detailed descriptions of 24 important industrial processes and products. It brings information on energy and raw material consumption and production data of chemicals up to date and offers not just improved and extended chapters, but completely new ones as well.

This new edition of Chemical Technology: From Principles to Products features a new chapter illustrating the global economic map and its development from the 15th century until today, and another on energy consumption in human history. Chemical key technologies for a future sustainable energy system such as power-to-X and hydrogen storage are now also examined. Chapters on inorganic products, material reserves, and water consumption and resources have been extended, while another presents environmental aspects of plastic pollution and handling of plastic waste. The book also adds four important processes to its pages: production of titanium dioxide, silicon, production and chemical recycling of polytetrafluoroethylene, and fermentative synthesis of amino acids.

-Provides comprehensive coverage of chemical technology?from the fundamentals to 24 of the most important processes
-Intertwines the four disciplines of chemical technology: chemistry, thermal and mechanical unit operations, chemical reaction engineering and general chemical technology
-Fully updated with new content on: power-to-X and hydrogen storage; inorganic products, including metals, glass, and ceramics; water consumption and pollution; and additional industrial processes
-Written by authors with extensive experience in teaching the topic and helping students understand the complex concepts

Chemical Technology: From Principles to Products, Second Edition is an ideal textbook for advanced students of chemical technology and will appeal to anyone in chemical engineering.


Andreas Jess, PhD is Professor of Chemical Engineering at the University of Bayreuth since 2001. His research interests are the optimization and modeling of catalytic processes, utilization of ionic liquids, and processes for production of fuels and chemicals from fossil and renewable resources.

Peter Wasserscheid, PhD, is Professor of Chemical Engineering at the University of Erlangen-Nuremberg. He is also a founding member of the Solvent Innovation GmbH and acts as its scientific supervisor. His research focuses on highly selective catalytic processes.

Andreas Jess, PhD is Professor of Chemical Engineering at the University of Bayreuth since 2001. His research interests are the optimization and modeling of catalytic processes, utilization of ionic liquids, and processes for production of fuels and chemicals from fossil and renewable resources. Peter Wasserscheid, PhD, is Professor of Chemical Engineering at the University of Erlangen-Nuremberg. He is also a founding member of the Solvent Innovation GmbH and acts as its scientific supervisor. His research focuses on highly selective catalytic processes.

Cover 1
Title Page 5
Copyright 6
Contents 9
Preface of First Edition (and Guidelines How to Use This Textbook) 19
Why a Second Edition? 20
Notation 23
Chapter 1 Introduction 43
1.1 What Is Chemical Technology? 43
1.2 The Chemical Industry 44
1.3 The Changing Global Economic Map 48
Chapter 2 Chemical Aspects of Industrial Chemistry 61
2.1 Stability and Reactivity of Chemical Bonds 61
2.1.1 Factors that Influence the Electronic Nature of Bonds and Atoms 61
2.1.2 Steric Effects 62
2.1.3 Classification of Reagents 63
2.2 General Classification of Reactions 63
2.2.1 Acid–Base?Catalyzed Reactions 64
2.2.2 Reactions via Free Radicals 65
2.2.3 Nucleophilic Substitution Reactions 66
2.2.4 Reactions via Carbocations 66
2.2.5 Electrophilic Substitution Reactions at Aromatic Compounds 67
2.2.6 Electrophilic Addition Reactions 69
2.2.7 Nucleophilic Addition Reactions 69
2.2.8 Asymmetric Synthesis 70
2.3 Catalysis 72
2.3.1 Introduction and General Aspects 72
2.3.2 Homogeneous, Heterogeneous, and Biocatalysis 77
2.3.3 Production and Characterization of Heterogeneous Catalysts 80
2.3.4 Deactivation of Catalysts 83
2.3.5 Future Trends in Catalysis Research 85
Chapter 3 Thermal and Mechanical Unit Operations 87
3.1 Properties of Gases and Liquids 88
3.1.1 Ideal and Real Gas 88
3.1.2 Heat Capacities and the Joule–Thomson Effect 92
3.1.3 Physical Transformations of Pure Substances: Vaporization and Melting 95
3.1.4 Transport Properties (Diffusivity, Viscosity, Heat Conduction) 100
3.1.4.1 Basic Equations for Transfer of Heat, Mass, and Momentum 100
3.1.4.2 Transport Coefficients of Gases 103
3.1.4.3 Transport Coefficients of Liquids 108
3.2 Heat and Mass Transfer in Chemical Engineering 111
3.2.1 Heat Transport 111
3.2.1.1 Heat Conduction 111
3.2.1.2 Heat Transfer by Convection (Heat Transfer Coefficients) 112
3.2.1.3 Boiling Heat Transfer 122
3.2.1.4 Heat Transfer by Radiation 123
3.2.1.5 Transient Heat Transfer by Conduction and Convection 124
3.2.2 Mass Transport 128
3.2.2.1 Forced Flow in Empty Tubes and Hydrodynamic Entrance Region 128
3.2.2.2 Steady?State and Transient Diffusive Mass Transfer 129
3.2.2.3 Diffusion in Porous Solids 131
3.3 Thermal Unit Operations 135
3.3.1 Heat Exchangers (Recuperators and Regenerators) 136
3.3.2 Distillation 141
3.3.2.1 Distillation Principles 142
3.3.2.2 Design of Distillation Columns (Ideal Mixtures) 146
3.3.2.3 Azeotropic, Extractive, and Pressure Swing Distillation 150
3.3.2.4 Reactive Distillation 152
3.3.3 Absorption (Gas Scrubbing) 152
3.3.3.1 Absorption Principles 152
3.3.3.2 Design of Absorption Columns 158
3.3.4 Liquid–Liquid Extraction 160
3.3.4.1 Extraction Principles 160
3.3.4.2 Design of Extraction Processes 162
3.3.5 Adsorption 164
3.3.5.1 Adsorption Equilibrium and Adsorption Isotherms 164
3.3.5.2 Adsorption Kinetics (Single Particle) 171
3.3.5.3 Design of Adsorption Processes 173
3.3.6 Fluid–Solid Extraction 178
3.3.6.1 Principles of Fluid–Solid Extraction 178
3.3.6.2 Design of Fluid–Solid Extractions 180
3.3.7 Crystallization 181
3.3.7.1 Ideal Binary Eutectic Phase System 181
3.3.7.2 Ideal Binary Phase System with Both Solids Completely Soluble in One Another 182
3.3.8 Separation by Membranes 183
3.3.8.1 Principles of Membrane Separation 183
3.3.8.2 Applications of Membrane Separation Processes 186
3.4 Mechanical Unit Operations 191
3.4.1 Conveyance of Fluids 191
3.4.1.1 Pressure Loss in Empty Tubes 191
3.4.1.2 Pressure Loss in Fixed, Fluidized, and Entrained Beds 196
3.4.1.3 Compressors and Pumps 199
3.4.2 Contacting and Mixing of Fluids 201
3.4.3 Crushing and Screening of Solids 202
3.4.3.1 Particle Size Reduction 202
3.4.3.2 Particle Size Analysis 202
3.4.3.3 Screening and Classification of Particles (Size Separation) 206
3.4.3.4 Solid–Solid Separation (Sorting of Different Solids) 206
3.4.4 Separation of Solids from Fluids 206
3.4.4.1 Filtration 206
3.4.4.2 Separation of Solids from Fluids by Sedimentation 207
3.4.4.3 Screening and Classification of Particles (Size Separation) 209
Chapter 4 Chemical Reaction Engineering 213
4.1 Main Aspects and Basic Definitions of Chemical Reaction Engineering 213
4.1.1 Design Aspects and Scale?up Dimensions of Chemical Reactors 214
4.1.2 Speed of Chemical and Biochemical Reactions 214
4.1.3 Influence of Reactor Type on Productivity 216
4.1.4 Terms Used to Characterize the Composition of a Reaction Mixture 216
4.1.5 Terms Used to Quantify the Result of a Chemical Conversion 217
4.1.6 Reaction Time and Residence Time 217
4.1.7 Space Velocity and Space–Time Yield 218
4.2 Chemical Thermodynamics 219
4.2.1 Introduction and Perfect Gas Equilibria 219
4.2.2 Real Gas Equilibria 226
4.2.3 Equilibrium of Liquid–Liquid Reactions 228
4.2.4 Equilibrium of Gas–Solid Reactions 230
4.2.5 Calculation of Simultaneous Equilibria 232
4.3 Kinetics of Homogeneous Reactions 234
4.3.1 Rate Equation: Influence of Temperature and Reaction Order 234
4.3.1.1 First?Order Reaction 237
4.3.1.2 Reaction of nth Order 238
4.3.1.3 Second?Order Reaction 238
4.3.2 Parallel Reactions and Reactions in Series 239
4.3.2.1 Two Parallel First?Order Reactions 239
4.3.2.2 Two First?Order Reactions in Series 239
4.3.3 Reversible Reactions 242
4.3.4 Reactions with Varying Volume (for the Example of a Batch Reactor) 245
4.4 Kinetics of Fluid–Fluid Reactions 246
4.4.1 Mass Transfer at a Gas–Liquid Interface (Two?Film Theory) 247
4.4.2 Mass Transfer with (Slow) Homogeneous Reaction in the Bulk Phase 249
4.4.3 Mass Transfer with Fast or Instantaneous Reaction near or at the Interface 250
4.5 Kinetics of Heterogeneously Catalyzed Reactions 255
4.5.1 Spectrum of Factors Influencing the Rate of Heterogeneously Catalyzed Reactions 255
4.5.2 Chemical Reaction Rate: Surface Kinetics 259
4.5.2.1 Sorption on the Surface of Solid Catalysts 259
4.5.2.2 Rate Equations for Heterogeneously Catalyzed Surface Reactions 259
4.5.3 Reaction on a Solid Catalyst and Interfacial Transport of Mass and Heat 264
4.5.3.1 Interaction of External Mass Transfer and Chemical Reaction 264
4.5.3.2 Combined Influence of External Mass and Heat Transfer on the Effective Rate 267
4.5.4 Chemical Reaction and Internal Transport of Mass and Heat 274
4.5.4.1 Pore Diffusion Resistance and Effective Reaction Rate 274
4.5.4.2 Combined Influence of Pore Diffusion and Intraparticle Heat Transport 280
4.5.5 Simultaneous Occurrence of Interfacial and Internal Mass Transport Effects 282
4.5.5.1 Irreversible First?Order Reaction 282
4.5.5.2 Reversible First?Order Reaction with the Influence of External and Internal Mass Transfer 284
4.5.6 Influence of External and Internal Mass Transfer on Selectivity 287
4.5.6.1 Influence of External Mass Transfer on the Selectivity of Reactions in Series 287
4.5.6.2 Influence of External Mass Transfer on the Selectivity of Parallel Reactions 289
4.5.6.3 Influence of Pore Diffusion on the Selectivity of Reactions in Series 290
4.5.6.4 Influence of Pore Diffusion on the Selectivity of Parallel Reactions 293
4.6 Kinetics of Gas–Solid Reactions 295
4.6.1 Spectrum of Factors Influencing the Rate of Gas–Solid Reactions 296
4.6.2 Reaction of a Gas with a Nonporous Solid 297
4.6.2.1 Survey of Border Cases and Models for a Reaction of a Gas with a Nonporous Solid 297
4.6.2.2 Shrinking Nonporous Unreacted Core and Solid Product Layer 297
4.6.2.3 Shrinking Nonporous Unreacted Core and Gaseous Product(s) 299
4.6.3 Reaction of a Gas with a Porous Solid 302
4.6.3.1 Survey of Border Cases and Models for a Reaction of a Gas with a Porous Solid 302
4.6.3.2 Basic Equations for the Conversion of a Porous Solid with a Gaseous Reactant 303
4.6.3.3 General Closed Solution by Combined Model (Approximation) 303
4.6.3.4 Homogeneous Uniform Conversion Model (No Concentration Gradients) 305
4.6.3.5 Shrinking Unreacted Core Model (Rate Determined by Diffusion Through Product Layer) 305
4.7 Criteria Used to Exclude Interphase and Intraparticle Mass and Heat Transport Limitations in Gas–Solid Reactions and Heterogeneously Catalyzed Reactions 307
4.7.1 External Mass Transfer Through Boundary Layer 307
4.7.2 External Heat Transfer 308
4.7.3 Internal Mass Transfer 308
4.7.4 Internal Heat Transfer 308
4.8 Kinetics of Homogeneously or Enzyme?catalyzed Reactions 311
4.8.1 Homogeneous and Enzyme Catalysis in a Single?Phase System 311
4.8.2 Homogeneous Two?Phase Catalysis 313
4.9 Kinetics of Gas–Liquid Reactions on Solid Catalysts 315
4.9.1 Introduction 315
4.9.2 High Concentration of Liquid Reactant B (or Pure B) and Slightly Soluble Gas 317
4.9.3 Low Concentration of Liquid Reactant B and Highly Soluble Gas and/or High Pressure 317
4.10 Chemical Reactors 318
4.10.1 Overview of Reactor Types and Their Characteristics 319
4.10.1.1 Brief Outline of Ideal and Real Reactors 319
4.10.1.2 Classification of Real Reactors Based on the Mode of Operation 320
4.10.1.3 Classification of Real Reactors According to the Phases 321
4.10.2 Ideal Isothermal Reactors 326
4.10.2.1 Well?Mixed (Discontinuous) Isothermal Batch Reactor 327
4.10.2.2 Continuously Operated Isothermal Ideal Tank Reactor 328
4.10.2.3 Continuously Operated Isothermal Ideal Tubular Reactor 328
4.10.2.4 Continuously Operated Isothermal Tubular Reactor with Laminar Flow 329
4.10.2.5 Continuously Operated Isothermal Cascade of Tank Reactors 332
4.10.2.6 Ideal Isothermal Tubular Recycle Reactor 332
4.10.2.7 Comparison of the Performance of Ideal Isothermal Reactors 333
4.10.3 Non?isothermal Ideal Reactors and Criteria for Prevention of Thermal Runaway 336
4.10.3.1 Well?Mixed (Discontinuously Operated) Non?isothermal Batch Reactor 337
4.10.3.2 Continuously Operated Non?isothermal Ideal Tank Reactor (CSTR) 341
4.10.3.3 Continuously Operated Non?isothermal Ideal Tubular Reactor 345
4.10.3.4 Optimum Operating Lines of Continuous Ideal Non?isothermal Reactors 348
4.10.4 Non?ideal Flow and Residence Time Distribution 352
4.10.4.1 Pulse Experiment 352
4.10.4.2 Step Experiment 353
4.10.5 Tanks?in?Series Model 355
4.10.5.1 Residence Time Distribution of a Cascade of Ideal Stirred Tank Reactors 355
4.10.5.2 Calculation of Conversion by the Tanks?in?Series Model 357
4.10.6 Dispersion Model 357
4.10.6.1 Axial Dispersion and Residence Time Distribution 357
4.10.6.2 Calculation of Conversion by the Dispersion Model 361
4.10.6.3 Dispersion and Conversion in Empty Pipes 363
4.10.6.4 Dispersion of Mass and Heat in Fixed Bed Reactors 365
4.10.6.5 Radial Variations in Bed Structure: Wall Effects in Narrow Packed Beds 366
4.10.7 Modeling of Fixed Bed Reactors 367
4.10.7.1 Fundamental Balance Equations of Fixed Bed Reactors 367
4.10.7.2 Criteria Used to Exclude a Significant Influence of Dispersion in Fixed Bed Reactors 369
4.10.7.3 Radial Heat Transfer in Packed Bed Reactors and Methods to Account for This 374
4.10.8 Novel Developments in Reactor Technology 378
4.10.8.1 Hybrid (Multifunctional) Reactors 379
4.10.8.2 Monolithic Reactors 380
4.10.8.3 Microreactors 381
4.10.8.4 Adiabatic Reactors with Periodic Flow Reversal 384
4.11 Measurement and Evaluation of Kinetic Data 386
4.11.1 Principal Methods for Determining Kinetic Data 387
4.11.1.1 Microkinetics 387
4.11.1.2 Macrokinetics 387
4.11.1.3 Laboratory Reactors 387
4.11.1.4 Pros and Cons of Integral and Differential Method 389
4.11.2 Evaluation of Kinetic Data (Reaction Orders, Rate Constants) 389
4.11.3 Laboratory?Scale Reactors for Kinetic Measurements 392
4.11.4 Transport Limitations in Experimental Catalytic Reactors 393
4.11.4.1 Ideal Plug Flow Behavior: Criteria to Exclude the Influence of Dispersion 394
4.11.4.2 Gradientless Ideal Particle Behavior: Criteria to Exclude the Influence of Interfacial and Internal Transport of Mass and Heat 396
4.11.4.3 Criterion to Exclude the Influence of the Dilution of a Catalytic Fixed Bed 397
4.11.5 Case Studies for the Evaluation of Kinetic Data 398
4.11.5.1 Case Study I: Thermal Conversion of Naphthalene 398
4.11.5.2 Case Study II: Heterogeneously Catalyzed Hydrogenation of Hexene 400
4.11.5.3 Case Study III: Heterogeneously Catalyzed Multiphase Reaction 402
4.11.5.4 Case Study IV: Non?isothermal Oxidation of Carbon Nanotubes and Fibers 405
Chapter 5 Raw Materials, Products, Environmental Aspects, and Costs of Chemical Technology 413
5.1 Raw Materials of Industrial Organic Chemistry and Energy Sources 414
5.1.1 Energy Consumption, Reserves, and Resources of Fossil Fuels and Renewables 415
5.1.1.1 Global and Regional Energy Consumption and Fuel Shares 415
5.1.1.2 World Energy Consumption and World Population 422
5.1.1.3 Economic and Social Aspects of Energy Consumption 422
5.1.1.4 Conventional and Non?conventional Fossil Fuels 429
5.1.1.5 Nuclear Power 431
5.1.1.6 Renewable Energy 432
5.1.1.7 Energy Mix of the Future 434
5.1.1.8 Global Warming 437
5.1.1.9 Ecological Footprint and Energy Consumption 441
5.1.1.10 Energy Demand and Energy Mix to Reconcile the World's Pursuit of Welfare and Happiness with the Necessity to Preserve the Integrity of the Biosphere 443
5.1.2 Composition of Fossil Fuels and Routes for the Production of Synthetic Fuels 445
5.1.3 Natural Gas and Other Technical Gases 445
5.1.3.1 Properties of Natural Gas and Other Technical Gases 445
5.1.3.2 Conditioning of Natural Gas, Processes, and Products Based on Natural Gas 448
5.1.4 Crude Oil and Refinery Products 452
5.1.4.1 Production, Reserves, and Price of Crude Oil 452
5.1.4.2 Properties of Crude Oil 454
5.1.4.3 Properties of Major Refinery Products 456
5.1.4.4 Refinery Processes 457
5.1.5 Coal and Coal Products 460
5.1.5.1 Properties of Coal and Other Solid Fuels 460
5.1.5.2 Processes and Products Based on Coal 462
5.1.6 Renewable Raw Materials 464
5.1.6.1 Base Chemicals from Renewable Raw Materials 464
5.1.6.2 Fats and Vegetable Oils 465
5.1.6.3 Carbohydrates 468
5.1.6.4 Extracts and Excreta from Plants 470
5.1.7 Energy Consumption in Human History 471
5.1.7.1 Time Travel No. 1: Global Energy Consumption from 10?000 BCE Until 2010 471
5.1.7.2 Time Travel No. 2: From Industrial Revolution to Modern Energy Systems 471
5.1.7.3 Time Travel No. 3: Building of Khufu's Giant Pyramid in Ancient Egypt 475
5.1.8 Power?to?X and Hydrogen Storage Technologies 476
5.1.8.1 Hydrogen: Compressed and Cryogenic 478
5.1.8.2 Chemical Hydrogen Storage: General Considerations in Gaseous Compounds 482
5.1.8.3 Chemical Hydrogen Storage in Gaseous Compounds 482
5.1.8.4 Chemical Hydrogen Storage in Liquid Compounds 483
5.2 Inorganic Products and Raw Materials 490
5.2.1 Nonmetallic Inorganic Materials 490
5.2.2 Metals 495
5.3 Organic Intermediates and Final Products 511
5.3.1 Alkanes and Syngas 511
5.3.2 Alkenes, Alkynes, and Aromatic Hydrocarbons 514
5.3.3 Organic Intermediates Functionalized with Oxygen, Nitrogen, or Halogens 521
5.3.3.1 Alcohols 523
5.3.3.2 Ethers 526
5.3.3.3 Epoxides 526
5.3.3.4 Aldehydes 527
5.3.3.5 Ketones 529
5.3.3.6 Acids 530
5.3.3.7 Amines and Nitrogen?Containing Intermediates 532
5.3.3.8 Lactams, Nitriles, and Isocyanates 533
5.3.3.9 Halogenated Organic Intermediates 535
5.3.4 Polymers 537
5.3.4.1 Polyolefins and Polydienes 538
5.3.4.2 Vinyl Polymers and Polyacrylates 539
5.3.4.3 Polyesters, Polyamides, and Polyurethanes 543
5.3.5 Detergents and Surfactants 545
5.3.5.1 Structure and Properties of Detergent and Surfactants 545
5.3.5.2 Cationic Detergents 546
5.3.5.3 Anionic Detergents 546
5.3.5.4 Nonionic Detergents 547
5.3.6 Fine Chemicals 549
5.3.6.1 Dyes and Colorants 550
5.3.6.2 Adhesives 550
5.3.6.3 Fragrance and Flavor Chemicals 550
5.3.6.4 Pesticides 550
5.3.6.5 Vitamins, Food, and Animal Feed Additives 552
5.3.6.6 Pharmaceuticals 552
5.4 Environmental Aspects of Chemical Technology 554
5.4.1 Air Pollution 554
5.4.2 Water Consumption and Water Footprint 557
5.4.2.1 Water Sources and Water Consumption 557
5.4.2.2 Water Footprint and Water Availability 559
5.4.3 Plastic Production, Pollution, and Recycling of Plastic Waste 565
5.4.3.1 Global Situation 565
5.4.3.2 Plastic Production and Recycling of Plastic Waste in Europe 568
5.4.4 “Green Chemistry” and Quantifying the Environmental Impact of Chemical Processes 569
5.5 Production Costs of Fuels and Chemicals Manufacturing 572
5.5.1 Price of Chemical Products 572
5.5.2 Investment Costs 572
5.5.3 Variable Costs 574
5.5.4 Operating Costs (Fixed and Variable Costs) 575
Chapter 6 Examples of Industrial Processes 579
6.1 Ammonia Synthesis 579
6.1.1 Historical Development of Haber–Bosch Process 579
6.1.2 Thermodynamics of Ammonia Synthesis 581
6.1.3 Kinetics and Mechanism of Ammonia Synthesis 582
6.1.4 Technical Ammonia Process and Synthesis Reactors 584
6.2 Syngas and Hydrogen 589
6.2.1 Options to Produce Syngas and Hydrogen (Overview) 589
6.2.2 Syngas from Solid Fuels (Coal, Biomass) 593
6.2.2.1 Basic Principles and Reactions of Syngas Production from Solid Fuels 593
6.2.2.2 Syngas Production by Gasification of Solid Fuels 594
6.2.2.3 Case Study: Syngas and Hydrogen by Gasification of Biomass 595
6.2.3 Syngas by Partial Oxidation of Heavy Oils 602
6.2.4 Syngas by Steam Reforming of Natural Gas 604
6.3 Sulfuric Acid 607
6.3.1 Reactions and Thermodynamics of Sulfuric Acid Production 607
6.3.2 Production of SO2 608
6.3.3 SO2 Conversion into SO3 609
6.3.4 Sulfuric Acid Process 614
6.4 Nitric Acid 615
6.4.1 Reactions and Thermodynamics of Nitric Acid Production 616
6.4.2 Kinetics of Catalytic Oxidation of Ammonia 618
6.4.2.1 Catalytic Oxidation of Ammonia on a Single Pt Wire for Cross?Flow of the Gas 619
6.4.2.2 Catalytic Oxidation of Ammonia in an Industrial Reactor, That Is, on a Series of Pt Gauzes 625
6.4.3 NO Oxidation 629
6.4.4 Nitric Acid Processes 630
6.5 Coke and Steel 633
6.5.1 Steel Production (Overview) 633
6.5.1.1 Steel Production Based on the Blast Furnace Route 634
6.5.1.2 Steel Production Based on Scrap and Direct Reduced Iron (DRI) 635
6.5.2 Production of Blast Furnace Coke 635
6.5.2.1 Inspection of Transient Process of Coking of Coal 638
6.5.2.2 Case I: Negligible Thermal Resistance of Coal/Coke Charge 638
6.5.2.3 Case II: Negligible Thermal Resistance of Heated Brick Wall 640
6.5.2.4 Case III: Thermal Resistances of Brick Wall and Coal Charge Have to Be Considered 640
6.5.3 Production of Pig Iron in a Blast Furnace 641
6.5.3.1 Coke Consumption of a Blast Furnace: Historical Development and Theoretical Minimum 645
6.5.3.2 Residence Time Distribution of a Blast Furnace 648
6.6 Basic Chemicals by Steam Cracking 651
6.6.1 General and Mechanistic Aspects 651
6.6.2 Factors that Influence the Product Distribution 654
6.6.2.1 Influence of Applied Feedstock 654
6.6.2.2 Influence of the Temperature in the Cracking Oven 654
6.6.2.3 Influence of Residence Time 654
6.6.2.4 Influence of Hydrocarbon Partial Pressure in the Cracking Oven 655
6.6.3 Industrial Steam Cracker Process 655
6.6.4 Economic Aspects of the Steam Cracker Process 659
6.7 Liquid Fuels by Cracking of Heavy Oils 660
6.7.1 Thermal Cracking (Delayed Coking) 661
6.7.2 Fluid Catalytic Cracking (FCC Process) 664
6.8 Clean Liquid Fuels by Hydrotreating 667
6.8.1 History, Current Status, and Perspective of Hydrotreating 667
6.8.2 Thermodynamics and Kinetics of Hydrodesulfurization (HDS) 668
6.8.3 Hydrodesulfurization Process and Reaction Engineering Aspects 671
6.9 High?Octane Gasoline by Catalytic Reforming 675
6.9.1 Reactions and Thermodynamics of Catalytic Reforming 675
6.9.2 Reforming Catalyst 677
6.9.3 Process of Catalytic Reforming 677
6.9.4 Deactivation and Regeneration of a Reforming Catalyst 680
6.9.4.1 Coke Burn?Off Within a Single Catalyst Particle 680
6.9.4.2 Regeneration in a Technical Fixed Bed Reactor 685
6.10 Refinery Alkylation 691
6.10.1 Reaction and Reaction Mechanism of Refinery Alkylation 691
6.10.2 Alkylation Feedstock and Products 693
6.10.3 Process Variables 693
6.10.3.1 Reaction Temperature 693
6.10.3.2 Acid Strength and Composition 694
6.10.3.3 Isobutane Concentration 694
6.10.3.4 Effect of Mixing 694
6.10.4 Commercial Alkylation Processes 694
6.10.4.1 Commercial Processes Using Hydrofluoric Acid as Liquid Catalyst 695
6.10.4.2 Commercial Processes Using Sulfuric Acid as Liquid Catalyst 696
6.10.4.3 Comparison of Commercially Applied Alkylation Processes 698
6.11 Fuels and Chemicals from Syngas: Methanol and Fischer–Tropsch Synthesis 699
6.11.1 Fischer–Tropsch Synthesis 700
6.11.1.1 Reactions and Mechanisms of Fischer–Tropsch Synthesis 701
6.11.1.2 Intrinsic and Effective Reaction Rate of Fischer–Tropsch Synthesis 704
6.11.1.3 History, Current Status, and Perspectives of Fischer–Tropsch Synthesis 705
6.11.1.4 Fischer–Tropsch Processes and Reactors 708
6.11.1.5 Modeling of a Multi?tubular Fixed Bed Fischer–Tropsch Reactor 711
6.11.2 Methanol Synthesis 718
6.11.2.1 Thermodynamics of Methanol Synthesis 719
6.11.2.2 Catalysts for Methanol Synthesis 721
6.11.2.3 Processes and Synthesis Reactors 724
6.12 Ethylene and Propylene Oxide 727
6.12.1 Commercial Production of Ethylene Oxide 727
6.12.1.1 Chlorohydrin Process 727
6.12.1.2 Direct Oxidation of Ethylene 728
6.12.1.3 Products Made of Ethylene Oxide 730
6.12.2 Commercial Production of Propylene Oxide 731
6.12.2.1 Chlorohydrin Process 731
6.12.2.2 Indirect Oxidation of Propylene 732
6.12.2.3 Products Made of Propylene Oxide 734
6.13 Catalytic Oxidation of o?Xylene to Phthalic Acid Anhydride 736
6.13.1 Production and Use of Phthalic Anhydride (Overview) 736
6.13.2 Design and Simulation of a Multi?tubular Reactor for Oxidation of o?Xylene to PA 737
6.14 Hydroformylation (Oxosynthesis) 743
6.14.1 Industrial Relevance of Hydroformylation 743
6.14.2 Hydroformylation Catalysis 745
6.14.3 Current Hydroformylation Catalyst and Process Technologies 748
6.14.4 Advanced Catalyst Immobilization Technologies for Hydroformylation Catalysis 756
6.14.4.1 Immobilization of Homogeneous Hydroformylation Catalysts on Solid Surfaces by Covalent Anchoring 756
6.14.4.2 Catalyst Separation by Size Exclusion Membranes 757
6.14.4.3 Catalyst Immobilization in Liquid–Liquid Biphasic Reaction Systems Using Fluorous Phases: Supercritical CO2 or Ionic Liquids 757
6.14.4.4 Supported Liquid Hydroformylation Catalysis 760
6.15 Acetic Acid 763
6.15.1 Acetic Acid Synthesis via Acetaldehyde Oxidation 764
6.15.2 Acetic Acid Synthesis via Butane or Naphtha Oxidation 765
6.15.3 Acetic Acid Synthesis via Methanol Carbonylation 766
6.15.3.1 BASF High?Pressure Process 766
6.15.3.2 Monsanto Low?Pressure Process 767
6.15.3.3 Cativa Process 769
6.15.4 Other Technologies for the Commercial Production of Acetic Acid 770
6.15.4.1 Direct Ethylene Oxidation 770
6.15.4.2 Acetic Acid Production by Ethane and Methane Oxidation 770
6.16 Ethylene Oligomerization Processes for Linear 1?Alkene Production 771
6.16.1 Industrial Relevance of 1?Olefins 771
6.16.2 Aluminum?Alkyl?Based “Aufbaureaktion” (Growth Reaction) 772
6.16.3 Nickel?Catalyzed Oligomerization: Shell Higher Olefin Process (SHOP) 775
6.16.4 Metallacycle Mechanism for Selective Ethylene Oligomerization 777
6.17 Production of Fine Chemicals (Example Menthol) 782
6.17.1 Menthol and Menthol Production (Overview) 782
6.17.2 Thermodynamics and Kinetics of Epimerization of Menthol Isomers 783
6.17.3 Influence of Mass Transfer on the Epimerization of Menthol Isomers 786
6.17.4 Epimerization of Menthol Isomers in Technical Reactors 790
6.18 Treatment of Exhaust Gases from Mobile and Stationary Sources 792
6.18.1 Automotive Emission Control 792
6.18.1.1 Emission Standards and Primary Measures for Reduction of Engine Emissions 792
6.18.1.2 Catalytic Converters for Reduction of Car Engine Emissions 794
6.18.2 Selective Catalytic Reduction (SCR) of NOx from Flue Gas from Power Plants 798
6.18.2.1 Treatment of Flue Gas from Power Plants (Overview) 798
6.18.2.2 Formation of Nitrogen Oxides During Fuel Combustion in Power Plants 799
6.18.2.3 Catalysts and Reactors for Selective Catalytic Reduction of NOx 799
6.18.2.4 Reaction Chemistry of Selective Catalytic Reduction of NOx 800
6.18.2.5 Reaction Kinetics and Design of SCR Reactor 801
6.19 Industrial Electrolysis 805
6.19.1 Electrochemical Kinetics and Thermodynamics 805
6.19.1.1 Faraday's Law and Current Efficiency 805
6.19.1.2 Electrochemical Potentials 806
6.19.1.3 Galvanic and Electrolysis Cells, Nernst's Law 807
6.19.1.4 Standard Electrode Potentials 807
6.19.1.5 Electrical Work and Thermoneutral Enthalpy Voltage 807
6.19.1.6 Overpotentials 809
6.19.2 Chlorine and Sodium Hydroxide 810
6.19.2.1 Applications of Chlorine and Sodium Hydroxide 810
6.19.2.2 Processes of Chlor?Alkali Electrolysis 811
6.19.2.3 Diaphragm Process 811
6.19.2.4 Mercury Cell Process 812
6.19.2.5 Membrane Process 813
6.19.3 Electrolysis of Water 815
6.19.4 Electrometallurgy (Purification of Metals by Electrorefining) 820
6.19.4.1 Electrolytic Refining in Aqueous Solution 820
6.19.4.2 Fused Salt Electrolysis (Production of Aluminum) 821
6.20 Polyethene Production 824
6.20.1 Polyethene Classification and Industrial Use 824
6.20.2 General Characteristics of PE Production Processes 825
6.20.2.1 Exothermicity of the Reaction and Thermal Stability of Ethene 826
6.20.2.2 Purity of Ethene 826
6.20.3 Reaction Mechanism and Process Equipment for the Production of LDPE 826
6.20.4 Catalysts for the Production of HDPE and LLDPE 829
6.20.4.1 Ziegler Catalyst Systems 829
6.20.4.2 Phillips Catalyst Systems 830
6.20.4.3 Single?Site Metallocene Catalyst Systems 830
6.20.5 Production Processes for HDPE and LLDPE 831
6.20.6 PE Production Economics and Modern Developments in PE Production 834
6.21 Titanium Dioxide 835
6.21.1 Production and Use of Titanium Dioxide (Overview) 835
6.21.2 Sulfate Process for Production of Titanium Dioxide 835
6.21.3 Chloride Process for Production of Titanium Dioxide 837
6.22 Silicon 838
6.22.1 Production and Use of Silicon (Overview) 838
6.22.2 Carbothermic Reduction of Silica 839
6.22.3 Refining, Casting, and Crushing of Metallurgical Grade Silicon 840
6.22.4 Economics of the Metallurgical Grade Silicon Production 840
6.22.5 Production of Photovoltaic Grade Silicon by Purification of Metallurgical Grade Silicon 840
6.22.5.1 Production of Photovoltaic Grade Silicon by the Siemens Process 840
6.22.5.2 Fluidized Bed Reactor Process for Production of Photovoltaic Grade Silicon 841
6.23 Polytetrafluoroethylene (PTFE) 843
6.23.1 Production and Use of PTFE (Overview) 843
6.23.2 Process for Production of PTFE 844
6.23.3 Treatment of PTFE Waste 844
6.23.3.1 Incineration and Disposal of PTFE Waste 846
6.23.3.2 Reprocessing of PTFE Waste 846
6.23.3.3 Chemical Recycling of PTFE Waste 847
6.24 Production of Amino Acids by Fermentation 849
6.24.1 General Aspects 849
6.24.2 Overview of the Methods Applied for Industrial Amino Acid Production 849
6.24.2.1 Amino Acid Extraction from Protein Hydrolysates 849
6.24.2.2 Chemical Synthesis 850
6.24.2.3 Biotechnological Processes 851
6.24.3 Amino Acid Fermentation 852
6.24.3.1 Bacteria for Amino Acid Production and Strain Development 852
6.24.3.2 Substrates 853
6.24.3.3 Fermentation Process 853
6.24.3.4 Downstream 854
References 857
Index 883
EULA 908

Erscheint lt. Verlag 13.12.2019
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte Applied Science • CHEMICAL ENERGY • chemical engineering • chemical reaction • chemical technology • Chemie • Chemische Technik • Chemische Verfahrenstechnik • Chemistry • Energie • Energy • Fossile Brennstoffe • Fossil Fuels • Industrial Chemistry • <p>chemistry • mechanical unit operations • power-to-x</p> • Technische u. Industrielle Chemie • thermal unit operations
ISBN-10 3-527-81564-3 / 3527815643
ISBN-13 978-3-527-81564-7 / 9783527815647
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
CHF 82,95