Numerical Solutions for Partial Differential Equations
Problem Solving Using Mathematica
Seiten
2019
CRC Press (Verlag)
978-0-367-44850-9 (ISBN)
CRC Press (Verlag)
978-0-367-44850-9 (ISBN)
This book describes the applications of Mathematica for the numerical solution of all classical types (hyperbolic, parabolic, and elliptic) of the partial differential equations of mathematical physics.
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
Ganzha, Victor Grigor'e; Vorozhtsov, Evgenii Vasilev
1. Introduction to Mathematica 2. Finite Difference Methods for Hyperbolic PDEs 3. Finite Difference Methods for Parabolic PDEs 4. Numerical Methods for Elliptic PDEs
| Erscheinungsdatum | 03.12.2019 |
|---|---|
| Verlagsort | London |
| Sprache | englisch |
| Maße | 156 x 234 mm |
| Gewicht | 453 g |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| Technik ► Umwelttechnik / Biotechnologie | |
| ISBN-10 | 0-367-44850-5 / 0367448505 |
| ISBN-13 | 978-0-367-44850-9 / 9780367448509 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …
Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90
Wenn Computer mit plus und mal an ihre Grenzen stoßen
Buch | Softcover (2025)
Springer (Verlag)
CHF 32,15