Advances in Plant Transgenics: Methods and Applications (eBook)
XXII, 366 Seiten
Springer Singapore (Verlag)
9789811396243 (ISBN)
The green revolution led to the development of improved varieties of crops, especially cereals, and since then, classical or molecular breeding has resulted in the creation of economically valuable species. Thanks to recent developments in genetic engineering, it has become possible to introduce genes from different sources, such as bacteria, fungi, viruses, mice and humans, to plants. This technology has made the scientific community aware of the critical role of transgenics, not only as a means of producing stress tolerant crops but also as a platform for the production of therapeutics through molecular farming.
This book discusses the commercial applications of plant transgenic technologies, including the use of transgenic cell culture approachesto improve the production of metabolites and high-value therapeutics as well as transgenic plants in pest management. It also explores generation of novel vectors, protein production using chloroplast engineering and the latest developments in this area, such as genome editing in plants. Featuring general discussions and research papers by leading international experts, it is a valuable resource for scientists, teachers, students and industrialists working in the field.The green revolution led to the development of improved varieties of crops, especially cereals, and since then, classical or molecular breeding has resulted in the creation of economically valuable species. Thanks to recent developments in genetic engineering, it has become possible to introduce genes from different sources, such as bacteria, fungi, viruses, mice and humans, to plants. This technology has made the scientific community aware of the critical role of transgenics, not only as a means of producing stress tolerant crops but also as a platform for the production of therapeutics through molecular farming.This book discusses the commercial applications of plant transgenic technologies, including the use of transgenic cell culture approachesto improve the production of metabolites and high-value therapeutics as well as transgenic plants in pest management. It also explores generation of novel vectors, protein production using chloroplast engineering and the latest developments in this area, such as genome editing in plants. Featuring general discussions and research papers by leading international experts, it is a valuable resource for scientists, teachers, students and industrialists working in the field.
Preface 5
Methods and Technologies 6
Application of Genetic Improvements 6
Production of Plant-Made Pharmaceuticals and Other Products 6
Contents 8
Editors and Contributors 11
About the Editors 11
Contributors 12
Abbreviations 16
Part I: Methods and Technologies 20
1: Plant Tissue Culture and DNA Delivery Methods 21
1.1 Introduction 22
1.2 Tissue Culture Methods 23
1.2.1 Callus Culture 23
1.2.2 Shoot Tip Culture 23
1.2.3 Microspore Culture 24
1.2.4 Somatic Embryos 25
1.2.5 Embryo Rescue 26
1.2.6 Cybrids 27
1.3 Plant Transformation Methods 27
1.3.1 Agrobacterium-Mediated Transformation 28
1.3.2 Biolistic Method/Particle Bombardment Method 29
1.3.3 Electroporation 29
1.3.4 Polyethylene Glycol-Mediated Transformation 30
1.3.5 Other Methods 30
1.4 Recalcitrance in Plant Tissue Culture 30
1.4.1 Tissue Culture and Transformation in Sesame a Recalcitrant Plant 30
1.4.1.1 Somatic Embryogenesis and Indirect Organogenesis 30
1.4.1.2 Adventitious Shoot Formation and Shoot Regeneration 32
1.4.1.3 Agrobacterium-Mediated Transformation of Sesame 33
References 36
2: Cell Cultures and Hairy Roots as Platform for Production of High-Value Metabolites: Current Approaches, Limitations, and Future Prospects 41
2.1 Introduction 42
2.2 Plant Cell Cultures 42
2.3 Cell Suspension Cultures 43
2.4 Cells Suspension vs Hairy Roots (Chromosome Number and Permeabilization) 45
2.5 Roots 46
2.5.1 Root Physiology 46
2.5.1.1 Root Architecture (Morphology, Topology, etc.)/Lateral Branches, Root Hairs 46
2.5.1.2 Soil Nutrients 47
2.5.2 Root Metabolomics 50
2.5.2.1 Phytohormones and Root Metabolomics 50
2.5.2.2 Anaerobic Metabolism 53
2.5.3 Hairy Roots 53
2.5.3.1 Morphology 53
2.5.3.2 Factors Influencing the Culture Medium 55
2.5.3.3 Elicitors 56
2.6 Genetically Modified Plants 57
2.6.1 Introduction 57
2.6.2 A. rhizogenes 58
2.6.3 Recombinant Protein Production 59
2.7 Applications 61
2.7.1 Phytochemical Production 61
2.7.1.1 Production of Secondary Metabolites 61
2.7.1.2 Productions of Compounds Not Located in Natural Roots 62
2.8 Phytoremediation 62
2.9 Limitations 63
2.9.1 Oxygen 63
2.9.2 Reduction of Chromosomes Number in Subcultures 63
2.9.3 Alterations of Regenerated Plants Morphology 63
2.10 Bioreactors 64
2.10.1 Stirred Tank Reactors (STR) 64
2.10.2 Submerged Bioreactors or Airlift 65
2.10.3 Bubble Column Reactor 66
2.10.4 Turbine Blade Reactor 66
2.10.5 Gas-Sparged Reactor 66
2.10.6 Spin Filter Reactor 66
2.11 Current Needs 66
References 67
3: Integrating the Bioinformatics and Omics Tools for Systems Analysis of Abiotic Stress Tolerance in Oryza sativa (L.) 76
3.1 Introduction 77
3.2 Factors Affecting Rice Productivity 77
3.3 Rice Research in Past, Present and Future 78
3.4 Systems Biology Is a New Paradigm in Biological Research 80
3.5 Developing the Parts and Generating the Components Data 80
3.6 Rice Omics 82
3.7 Systems Biology Approaches Help to Understand Abiotic Stress Responses in Rice 83
3.8 View of Constraints-Based Modelling 83
3.9 Conclusion 90
3.10 Future Perspectives 90
References 91
4: Green Biotechnology: A Brief Update on Plastid Genome Engineering 95
4.1 Introduction 96
4.2 Recent Developments in Plastid Genome Sequencing 96
4.3 Plastid Bioreactors for Molecular Farming 99
4.4 Plastid as a Biofactory for Industrially Important Enzymes, Metabolites, and Enzyme Cocktails for Biofuel Production 104
4.5 Updates on Plastid Transformation toward Improving Agricultural Traits 105
4.6 Concluding Remarks and Future Focus 107
References 107
5: New-Generation Vectors for Plant Transgenics: Methods and Applications 117
5.1 Introduction 118
5.2 GATEWAY-Compatible Binary Vectors 119
5.3 Promoter-Reporter (or Native Promoter-Gene Fusion) Constructs 119
5.4 Destination Vectors for Analysis of Subcellular Localization of Proteins 120
5.5 Destination Vectors for Constitutive Ectopic Gene Expression 121
5.6 Destination Vectors for Gene Silencing 122
5.7 Constructs for Complementation Analysis of Mutant Plant Lines 122
5.8 Destination Vectors for Inducible Gene Expression 123
5.9 GATEWAY Binary Vectors for Cereals 123
5.10 GATEWAY-Compatible MicroRNA Vectors 124
5.11 Gene Stacking/Multigene Cloning System 124
5.12 Tissue-Specific and Stress-Inducible Binary Vectors 125
5.13 Vectors for Marker-Free Transgenics 127
5.14 Plant Gene Targeting Vectors 128
5.15 Seamless Construct Preparation 131
5.16 Vectors for Virus-Induced Gene Silencing (VIGS) 131
5.17 Virus-Based Expression Vectors 133
5.18 Tobacco Mosaic Virus-Based Transient Vector 134
5.19 Cowpea Mosaic Virus-Derived Transient Vector 135
5.20 pSIM24 Vector (Mirabilis Mosaic Virus Promoter) 136
5.21 Concluding Remarks 136
References 137
6: Recent Developments in Generation of Marker-Free Transgenic Plants 142
6.1 Introduction 143
6.2 Insights into the Urgency for a Marker-Free Genetic Transformation 144
6.3 Approaches to Develop a Marker-Free Transgenic Plant 145
6.3.1 Two-Vector System 145
6.3.2 Transposon-Mediated Co-Transformation 147
6.3.3 Site-Specific Recombination 147
6.3.4 Negative Selection 148
6.3.5 Unconventional Markers 148
6.4 Recent Contributions Toward Marker-Free Transgenic Plant Development 149
6.5 Conclusions and Future Perspectives 149
References 152
7: Applications of Genome Engineering/Editing Tools in Plants 158
7.1 Introduction 159
7.2 Genome-Editing Systems in a Nutshell 159
7.3 Zinc Finger Nucleases (ZFNs) 160
7.4 Transcription Activator-Like Effector Nucleases (TALENs) 161
7.5 CRISPR/Cas9 System 161
7.6 Delivery Systems 162
7.7 Multiplex Genome Engineering 163
7.8 Merits of GE Technology Over the Dwindling Transgenic Approach 164
7.9 Genome Engineering Applications in Crop Plants 164
7.10 Functional Genomics 165
7.10.1 Loss of Function/Knockout 165
7.10.2 Large Fragment Deletions 165
7.10.3 Gain of Function/Knock-in 166
7.10.4 Precise Base Editing 166
7.10.5 Change of Function/Gene Replacement 166
7.10.6 Targeting miRNA 167
7.10.7 Transcriptional Regulation 167
7.10.8 Verification of DNA Motifs 168
7.11 Crop Improvement 168
7.11.1 Yield 168
7.11.2 Biotic Stress 169
7.11.3 Abiotic Stress 169
7.11.4 Augmented Nutritional Value 170
7.11.5 DNA-Free Genome Alteration 171
7.12 Other Applications 171
7.12.1 CRISPR Interference and Activation 172
7.12.2 Live Cell Imaging 172
7.12.3 Gene Drives 172
7.12.4 Chromatin Remodelling 173
7.12.5 Creation of Mutant Libraries 173
7.13 Regulating Crops with Edited Genomes 173
7.14 Conclusion 174
References 174
8: High-Throughput Analytical Techniques to Screen Plant Transgenics 181
8.1 Introduction 182
8.2 High-Throughput Chromatography and Mass Spectrometry for the Screening of Transgenic Plants 183
8.2.1 Sample Preparation for Plant Metabolite Analysis in Chromatography 183
8.2.2 Gas Chromatography and Mass Spectrometry 184
8.2.2.1 Gas Chromatography in Transgenic Plant Analysis 184
8.2.2.2 Applications of Gas Chromatography-Mass Spectrometry in Transgenic Plant 185
Nicotiana tobaccum (Tobacco) 185
Mentha piperita (Peppermint) 186
Arabidopsis thaliana 186
Petunia hybrida 186
8.2.2.3 High-Throughput GC and GC-MS Screening of Plant Transgenics 186
8.2.3 Liquid Chromatography and Mass Spectrometry 187
8.2.3.1 Liquid Chromatography in Transgenic Plant Analysis 187
8.2.3.2 Applications of LC and LC-MS in Transgenic Plant Screening 187
8.2.3.3 High Throughput Analysis of HPLC, LC-MS and MS Techniques in Plant Transgenics 187
8.3 High-Throughput Nuclear Magnetic Resonance (NMR) Spectroscopy for the Screening of Transgenic Plants 188
8.3.1 Introduction 188
8.3.2 Sample Preparation for the NMR Analysis 189
8.3.3 Statistical Analysis 190
8.3.4 Application of NMR Spectroscopy for Transgenic Plants 190
8.3.4.1 Lycopersicon esculentum (Tomato) 190
8.3.4.2 Solanum tuberosum (Potato) 190
8.3.4.3 Zea mays (Maize) 191
8.3.4.4 Oryza sativa (Rice) 191
8.3.4.5 Pisum sativum (Pea) 191
8.3.4.6 Wheat 192
8.3.4.7 Vitis vinifera (Grapes) 192
8.3.4.8 Citrus sinensis (Sweet Orange) 192
8.3.4.9 Lactuca sativa (Lettuce) 192
8.3.4.10 Nicotiana tabacum (Tobacco) 192
8.3.5 Summary 193
8.4 High-Throughput Fourier Transform Infrared (FT-IR) Spectroscopy for the Screening of Transgenic Plants 193
8.4.1 Introduction 193
8.4.2 Applications in Transgenic Plant Analysis 194
8.4.2.1 Lycopersicon esculentum (Tomato) 194
8.4.2.2 Barley 194
8.4.2.3 Trees 194
8.5 Conclusion and Future Perspectives 194
References 196
Part II: Applications in Genetic Improvement of Plants 200
9: Transgenic Technologies and Their Potential Applications in Horticultural Crop Improvement 201
9.1 Introduction 202
9.2 Transgenic, Cisgenic, and RNA Interference Technology 204
9.3 Traits Commonly Targeted for Developing Genetically Modified Horticultural Crops 205
9.4 Different Approaches for Developing Transgenic Horticultural Crops 206
9.5 Production of Genetically Modified Horticultural Crops: A Global Scenario 212
9.6 Application of Transgenic Technologies for The Improvement of Horticultural Crops: Commercial Success Story 217
9.6.1 Tomato with Enhanced Shelf Life 217
9.6.2 Potato with Enhanced Pest and Disease Resistance 217
9.6.3 Brinjal (Eggplant) with Enhanced Disease Resistance 217
9.6.4 Papaya with Enhanced Disease Resistance 218
9.6.5 Summer Squash with Multiple Virus Resistance 218
9.6.6 Plum with Resistance Toward Virus Infection 218
9.6.7 Banana with Resistance Against Xanthomonas Infection 219
9.7 Nutritional Health Benefits of Transgenic Horticultural Crops 219
9.8 Future Challenges, Strategies, and Opportunities of Transgenic Technologies in the Improvement of Horticultural Crop 220
9.9 Summary 221
References 221
10: Commercial Applications of Transgenic Crops in Virus Management 225
10.1 Introduction 226
10.2 Essentiality of Virus Resistant (VR) Transgenic Plant Using GE Approach 227
10.3 Methods to Develop VR GM Crops 230
10.4 Coat Protein-Mediated Resistance (CPMR) 230
10.5 Replicase Protein-Mediated Resistance (RPMR) 232
10.6 Movement Protein-Mediated Resistance (MPMR) 232
10.7 Nucleic Acid-Mediated Resistance (NAMR) 232
10.8 Artificial MicroRNA (amiR)-Mediated Resistance 237
10.9 Plant Protection by Expressing Other Proteins 240
10.10 Implications of Commercially Cultivated VR GM Food Crops 240
10.10.1 Virus-Resistant Squash 240
10.10.2 Virus-Resistant Potato 241
10.10.3 Virus-Resistant Papaya 241
10.10.4 Virus-Resistant Plum 241
10.11 Insights into the Progression of GM Plants 242
References 244
11: A Review on Reed Bed System as a Potential Decentralized Wastewater Treatment Practice 251
11.1 Introduction 252
11.2 Components of Reed Bed 254
11.2.1 Media 254
11.2.2 Vegetation 254
11.2.3 Microorganisms/Biofilms 255
11.2.4 Oxygen Availability 255
11.3 Types of RBSs 256
11.4 Performance Studies 256
11.5 Removal of Organic Substances 257
11.5.1 Removal of Nitrogen 257
11.5.2 Removal of Phosphorus 257
11.6 RBS in Cold Climate Situation 258
11.7 Molecular Studies on RBS for Deciphering Microorganisms 259
11.8 Conclusive Remarks 259
References 260
12: Inspection of Crop Wild Relative (Cicer microphyllum) as Potential Genetic Resource in Transgenic Development 264
12.1 Introduction 265
12.1.1 Geographical Distribution 267
12.1.2 Plant Characters 267
12.1.3 Uses 268
12.2 Regeneration of Cicer microphyllum by Tissue Culture 268
12.3 Physiological Evaluation for PEG-Mediated Stress 270
12.4 Cicer microphyllum: Genetic Resource of Candidate Genes 274
12.5 Importance of CWRs 275
12.6 Conclusion 277
References 278
13: Genome Modification Approaches to Improve Performance, Quality, and Stress Tolerance of Important Mediterranean Fruit Species (Olea europaea L., Vitis vinifera L., and Quercus suber L.) 284
13.1 Olea europaea L. 285
13.1.1 Introduction 285
13.1.2 Somatic Embryogenesis in Olive 286
13.1.3 Olive Breeding by DNA Manipulation 290
13.1.3.1 Genetic Transformation Mediated by Agrobacterium sp. 290
13.1.3.2 Genetic Transformation by Microparticle Bombardment 294
13.1.4 Transgenes Introduced in Olive Genome 295
13.1.4.1 Changing Vegetative Growth Habitus and Improvement of Rooting Ability 296
13.1.4.2 Enhance Tolerance Upon Abiotic Stresses: Cold and Salinity 297
13.1.4.3 Pest and Disease Resistance 298
13.1.4.4 Improvement of Oil Quality 299
13.2 Vitis vinifera L. 299
13.2.1 Introduction 299
13.2.2 Somatic Embryogenesis in Grapevine 301
13.2.3 Grapevine Breeding and DNA Manipulation Strategies 301
13.2.3.1 Conventional Breeding and DNA Sequencing Advances 301
13.2.3.2 Grapevine Transformation: Agrobacterium sp. and Biolistic Methods 302
13.2.4 Recent Advances in Grapevine Transformation: CRISPR/Cas9 304
13.3 Quercus suber L. 306
13.3.1 Introduction 306
13.3.2 Somatic Embryogenesis in Cork Oak 307
13.3.3 Genetic Transformation Protocols Established for Cork Oak 308
13.3.4 Candidate Genes and Pathways to Cork Oak Genetic Transformation 308
13.4 Future Perspectives 310
References 313
Part III: Applications in Production of Plant-Made Pharmaceuticals and Other Products 324
14: Key Challenges in Developing Products from Transgenic Plants 325
14.1 Introduction 326
14.2 Key Challenges in Developing Products from Transgenic Plants 327
14.2.1 Selection of the Host for Recombinant Protein Expression 327
14.2.2 Plant Tissues Used for Expression of Recombinant Proteins 327
14.3 Expression Systems 330
14.3.1 Plant Cell Suspension Culture 330
14.3.2 Nuclear Transformation 330
14.3.3 Chloroplast Transformation 331
14.3.4 Proteolysis of Endogenous Proteins 331
14.3.5 Downstream Processing and Purification 332
14.3.6 Glycosylation 333
14.4 Regulatory Challenges and Environmental Risks 333
14.5 Conclusion 334
References 337
15: Enhanced Production of Therapeutic Proteins in Plants: Novel Expression Strategies 342
15.1 Introduction 343
15.2 Regulation Accessories for Improved Expression 346
15.3 Viral Vector System 351
15.3.1 Suppressor-Enhanced Expression 352
15.4 Persistence of Transgene Protein in Cytoplasm 354
15.4.1 ER Compartment 354
15.4.2 Chloroplast Compartment 355
15.5 Final Remarks and Conclusions 355
References 356
16: Transcriptional Engineering for Enhancing Valuable Components in Photosynthetic Microalgae 361
16.1 Introduction 362
16.2 Current Strategies to Enhance Microalgal Lipids 363
16.3 Genetic Improvement Strategies for Microalgal Lipid Accumulation 364
16.4 Transcription Factors and Their Role 367
16.5 Microalgal Transcriptional Engineering 368
16.6 Possible Approaches to Empower Transcriptional Engineering for Microalgal Biotechnological Applications 369
16.7 Conclusions and Perspectives 370
References 371
| Erscheint lt. Verlag | 15.11.2019 |
|---|---|
| Zusatzinfo | XXII, 366 p. 26 illus., 23 illus. in color. |
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Biologie ► Botanik |
| Technik ► Umwelttechnik / Biotechnologie | |
| Schlagworte | Genetic Engineering • Metabolic Engineering • molecular farming • Phytoremediation • Stress tolerance • transgenic plants |
| ISBN-13 | 9789811396243 / 9789811396243 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich