Reviews in Plasmonics 2017 (eBook)
VIII, 323 Seiten
Springer International Publishing (Verlag)
978-3-030-18834-4 (ISBN)
Preface 6
Contents 7
Plasmonic-Additive Enabled Polymer Nanocomposites 9
1 Introduction 9
2 Surface Chemistry for Polymer Composite Integration 14
2.1 Polymer Grafting 15
2.2 Polyelectrolyte Coatings 15
2.3 Silica Capping 17
3 Plasmonic Polymer Nanocomposites 17
4 Conclusions 21
References 21
Graphene Plasmonics Based Terahertz Integrated Circuits 25
1 Introduction 25
2 Material Properties of Graphene 26
3 Graphene Based Plasmonic Waveguide Structures 28
4 Electromagnetic Modelling of Variants of GPPW 31
4.1 Graphene Plasmonic Nanostrip Waveguide (GPNSW) 31
4.2 Graphene Plasmonic Suspended Nanostrip Waveguide (GPSNSW) 38
4.3 Graphene Plasmonic Coplanar Waveguide (GPCPW) 41
4.4 Graphene Backed Graphene Plasmonic Coplanar Waveguide (GB-GPCPW) 46
5 Examples of Graphene Plasmonic Waveguide Based THz Integrated Circuits 47
5.1 Gap Coupled Half Wave Resonator in GPCPW 47
5.2 Parallel Coupled Resonator Band-Pass Filter Using GPNSW 50
5.3 T-Junction Power Splitter Using GPNSW 52
5.4 Graphene Based Terahertz Tunable Plasmonic Directional Coupler 53
5.5 Graphene Based Phase Shifters 56
5.6 Graphene Terahertz Plasmon Oscillators 57
5.7 Graphene Based Nano-Patch Antenna 58
6 Conclusions 59
References 59
A Lithography-Free and Chemical-Free Route to Wafer-Scale Gold Nanoisland Arrays for SERS 62
1 Introduction 63
2 Wafer-Scale Gold Nanoisland Arrays 64
3 Experiment Description 66
4 Fabrication of Gold Nanoisland Arrays with Cyclic Deposition and Anneal 66
5 Gold Nanoisland Arrays for SERS 74
6 Summary 79
References 79
Comparative Study Between Different Plasmonic Materials and Nanostructures for Sensor and SERS Application 84
1 Introduction 85
2 FDTD Method 87
2.1 Simulation Methodology 88
3 Optical Properties of Noble Metallic Nanostructure 90
3.1 Size Dependent 90
3.2 Effect of Dielectric Medium 90
3.3 Structural Parameters 94
4 Field Enhancement 102
4.1 Metallic Nanosphere 103
4.2 Multilayer 105
4.3 Dimer Nanostructure 107
4.4 Multimer 108
5 Conclusion 111
References 112
Emerging Plasmon-Optical and -Electrical Effects in Organic Solar Cells: A Combined Theoretical and Experimental Study 116
1 Introduction 117
1.1 Working Principles of Organic Solar Cells 117
1.2 Theoretical Governing Equations of Organic Solar Cells 119
1.3 Surface Plasmon Polaritons 123
2 Plasmon-Enhanced OSCs 124
2.1 Plasmon-Optical Effects: LSPRs by Metal NPs 125
2.2 Plasmon-Optical Effects: PSPRs by Nano-Patterned Electrode 126
2.3 Plasmon-Optical Effects: Multiple Resonances 126
2.4 Plasmon-Electrical Effect 127
3 Design Rules for Multiple Resonances 127
3.1 Optimizations of the Patterned Electrode 129
3.2 Strategic Incorporation of Metal Nanoparticles 130
3.3 Experimental Realization of Cooperative Plasmonic Resonances 133
4 Simultaneously Plasmon-Optical and -Electrical Effects in Single OSC Device 135
4.1 Plasmon-Optical Effects: Excitations of Plasmonic Asymmetric Modes 137
4.2 Plasmon-Optical Effects: Energy Transfer 139
4.3 Plasmon-Electrical Effects: Redistributions of Exciton Generation Region 140
4.4 Experimental Realization of Plasmon-Optical and Electrical Effects 141
5 Conclusion 143
References 144
Tunable Plasmonic Properties of Nanoshells 148
1 Introduction 148
2 The Dielectric Function of the Metals 152
3 Optical Properties of the Core Shell Nanoparticles 156
4 Sensing Applications of the Bimetallic Core Shell Based on LSPR and SERS 166
References 172
Topological Hyperbolic and Dirac Plasmons 176
1 Introduction 176
1.1 Helmholtz Theory for Hyperbolic Materials with ME Effect 180
2 Optical Modes at a Single Interface 181
3 Optical Modes in a Slab Waveguide 185
4 Summary and Outlook 195
References 195
Metal Nanoparticles Dispersed in Epoxy Resin: Synthesis, Optical Properties and Applications 198
1 Introduction 199
2 Physical and Chemical Properties of Epoxy Resins 201
3 Light-Nanoparticle Interaction in Dielectrics 203
4 Synthesis and Optical Properties 204
4.1 Thermal Vacuum Evaporation 204
4.2 Ion Implantation 206
4.3 Solvothermal Method 208
4.4 Photochemical Method 210
4.5 Ex Situ Multi-step Chemical Reduction 212
4.6 In Situ Chemical Method 218
5 Applications 222
5.1 Optical Sensing 222
5.2 Imaging 225
5.3 Surface Enhanced Raman Spectroscopy 227
5.4 Self-Healing and Shape-Memory Resins 228
5.5 Optical Attenuators 231
6 Conclusions 232
References 233
Surface Enhanced Raman Spectroscopy-Based Bio-molecular Detectors 236
1 Introduction 236
2 Methods and Mechanism 237
2.1 Electromagnetic Enhancement 238
2.2 Chemical Enhancement 239
2.3 Plasmonic Materials 240
3 Experimental Consideration and SERS Substrates 241
3.1 SERS Substrate Using Roughen Metal Surface 242
3.2 SERS Measurements Using Colloidal Metal NPs 242
3.3 SERS Measurements Using Core-Shell NPs 243
3.4 SERS Measurements Using Ag or Au NPs Assembled on Flat Substrates 247
3.5 SERS Measurements Using One-Dimensional SERS Substrates 251
3.6 Tip-Enhanced Raman Scattering (TERS) 254
3.7 SERS Tags 255
4 Summary and Conclusions 255
References 256
Review of Advances in Metal-Enhanced Fluorescence 259
1 Principles of Metal-Enhanced Fluorescence (MEF) 259
1.1 Enhanced Absorption from Metal Nanoparticles Is Characteristic of MEF Systems 260
1.2 Enhanced Intensities from Surface Plasmon-Coupled Emission (SPCE) Is Characteristic of MEF Systems 267
1.3 Principles of Enhanced Absorption and Emission Intersect to Form a Unified Description of MEF 271
2 Applications of Metal-Enhanced Fluorescence 272
2.1 MEF from Silver-Coated Luminescent Nanostructures Diversifies Potential Applications 273
2.2 Metal-Enhanced Systems on Plastic Substrates Yield Sensitive Assays for Biomedical Applications 276
2.3 Metal-Enhanced Systems Can Be Engineered for the Generation of Reactive Oxygen Species 280
3 Conclusion 285
References 286
Plasmonic Coupling Effects in Arrays of Noble Metal Nanoparticles 290
1 Introduction 290
2 Coupling Effects 292
3 Experiment and Simulations 299
4 Off-Resonance Absorption Peaks in Uniform 1D Arrays 303
5 Computational Simulations 308
6 Coupling in Dense 2D Monolayers of Metal Nanoparticles 310
7 Sample Morphology and Optical Characterization 311
8 Laser Driven Hybridization of Collective SPR Modes in 2D Monolayer of Silver Nanoparticles: Experiment 313
9 Comparison with Experiment 318
10 Conclusions 320
References 321
Index 326
| Erscheint lt. Verlag | 11.10.2019 |
|---|---|
| Reihe/Serie | Reviews in Plasmonics | Reviews in Plasmonics |
| Zusatzinfo | VIII, 323 p. 209 illus., 178 illus. in color. |
| Sprache | englisch |
| Themenwelt | Medizin / Pharmazie ► Studium |
| Naturwissenschaften ► Physik / Astronomie | |
| Technik | |
| Schlagworte | Nanoantennae • plasmonics • Surface Plasmons • Thin Films • Waveguide |
| ISBN-10 | 3-030-18834-5 / 3030188345 |
| ISBN-13 | 978-3-030-18834-4 / 9783030188344 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich