Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Transformations of Materials

Buch | Softcover
200 Seiten
2019
Morgan & Claypool Publishers (Verlag)
978-1-64327-617-5 (ISBN)
CHF 139,65 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
After a review of thermodynamics, this book covers Brownian motion and the diffusion equation, diffusion in solids based on transition-state theory, spinodal decomposition, nucleation and growth, instabilities in solidification, and diffusionless transformations. Each chapter includes exercises whose solutions are available in a separate manual.
Phase transformations are among the most intriguing and technologically useful phenomena in materials, particularly with regard to controlling microstructure. After a review of thermodynamics, this book has chapters on Brownian motion and the diffusion equation, diffusion in solids based on transition-state theory, spinodal decomposition, nucleation and growth, instabilities in solidification, and diffusionless transformations. Each chapter includes exercises whose solutions are available in a separate manual.

This book is based on the notes from a graduate course taught in the Centre for Doctoral Training in the Theory and Simulation of Materials. The course was attended by students with undergraduate degrees in physics, mathematics, chemistry, materials science, and engineering. The notes from this course, and this book, were written to accommodate these diverse backgrounds.

Dimitri Dimitrievich Vvedensky is Professor of Physics in the Department of Physics at Imperial College London. He obtained his B.S. in Mathematics at the University of Maryland and his S.M. and Ph.D in Materials Science at the Massachusetts Institute of Technology (MIT). He has been on the faculty at Imperial since 1985. He is the author of more than 250 technical publications, including 8 authored or edited books, and is a Fellow of the Institute of Physics and the American Physical Society. He has been a Guest Professor in the Department of Physics at the Eidgenössische Technische Hochschule (ETH) Zürich and at the University of Aix-Marseille, the Röntgen Professor at the University of Würzburg, and a Senior Fellow at the Institute for Pure and Applied Mathematics at UCLA. He is a three-time recipient of the Rector’s Award for Teaching Excellence.

Preface



1 Overview of Thermodynamics



1.1 Basic Concepts and Terminology



1.1.1 Systems and Boundaries



1.1.2 Equilibrium and State Variables



1.1.3 Processes



1.2 The Laws of Thermodynamics



1.2.1 The Zeroth Law of Thermodynamics



1.2.2 The First Law of Thermodynamics



1.2.3 The Second Law of Thermodynamics



1.2.4 The Third Law of Thermodynamics



1.3 Fundamental Equations



1.3.1 The Gibbs Function



1.3.2 The Helmholtz Function



1.4 Thermal, Mechanical, and Chemical Equilibria



1.5 Phase Equilibria



1.5.1 The Clausius–Clapeyron Equation



1.5.2 The Gibbs Phase Rule



1.6 Summary



Further Reading



Exercises



2 Brownian Motion, Random Walks, and the Diffusion Equation



2.1 Random Walks and Brownian Motion



2.1.1 Brownian Motion



2.1.2 The Random Walk and the Diffusion Equation



2.2 Fick’s Laws and the Diffusion Equation



2.2.1 Fick’s First Law



2.2.2 The Continuity Equation



2.2.3 Fick’s Second Law and the Diffusion Equation



2.3 Fundamental Solution of the Diffusion Equation



2.3.1 Differential Equation for Fourier Components



2.3.2 The Fundamental Solution



2.3.3 Solution of the Initial-Value Problem



2.4 Examples



2.5 Summary



Further Reading



Exercises



3 Atomic Diffusion in Solids



3.1 Defects in Solids



3.1.1 Point Defects



3.1.2 Line Defects



3.1.3 Plane Defects



3.1.4 Volume Defects



3.2 Thermodynamics of Point Defects



3.3 Diffusion Mechanisms



3.4 Transition-State Theory



3.4.1 Assumptions of Classical Transition-State Theory



3.4.2 Equilibrium Statistical Mechanics



3.4.3 The Dividing Surface



3.4.4 The Rate Constant



3.4.5 The Harmonic Approximation



3.5 Analysis of Diffusion Experiments



3.5.1 Diffusion Processes



3.5.2 Arrhenius Diagrams



3.6 Summary



Further Reading



Exercises



4 Spinodal Decomposition



4.1 The Bragg–Williams Model



4.2 The Phase Diagram



4.2.1 Thermodynamic Stability



4.2.2 Stable, Metastable, and Unstable Phases



4.2.3 Kinetics of Unmixing



4.3 The Cahn–Hilliard Equation



4.3.1 Spatially-Varying Concentrations



4.3.2 The Fundamental Equations



4.3.3 Functional Derivative of the Free Energy



4.3.4 Evolution Equation for the Concentration



4.4 Experiments on Spinodal Decomposition



4.5 Summary



Further Reading



Exercises



5 Nucleation and Growth



5.1 Classical Nucleation Theory



5.1.1 Metastability



5.1.2 Homogeneous formation of nuclei



5.2 Nucleation Rate of Solid-State Transformations



5.3 Homogeneous versus Heterogeneous Nucleation



5.3.1 Heterogeneous Nucleation on a Surface



5.3.2 Elastic Effects in Solid State Nucleation



5.4 Overall Transformation Rate



5.4.1 Kolmogorov–Johnson–Mehl–Avrami Theory



5.4.2 Derivation of the KJMA Equation



5.4.3 Determination of Nucleation Mechanisms



5.4.4 Graphene



5.5 Summary



Further Reading



Exercises



6 Instabilities of Solidification Fronts



6.1 Solidification of a Pure Liquid



6.1.1 The Heat Equation



6.1.2 Velocity of the Liquid-Solid Interface



6.1.3 The Gibbs–Thomson Equation



6.1.4 Equations for the Dimensionless Temperature



6.2 Motion of a Spherical Solidification Front



6.2.1 Solution for Shape-Preserving Growth



6.3 Linear Stability of Spherical Front



6.3.1 Solution of the Heat Equation



6.3.2 The Gibbs–Thomson Relation



6.3.3 The Conservation Equation



6.3.4 The Dispersion Relation



6.3.5 Numerical Simulation of Two-Dimensional Instabilities



6.4 Constitutional Supercooling



6.5 Summary



Further Reading



Exercises



7 Diffusionless Transformations



7.1 Martensitic Transformations



7.1.1 Crystallographic Considerations



7.1.2 Free Energy Changes



7.2 Shape-Memory Alloys and Pseudoelasticity



7.3 Theory of Pseudoelasticity



7.3.1 Ginzburg-Landau Free Energy Functional



7.3.2 Nucleation of Critical `True Twin’ Droplets



7.4 Summary



Further Reading



Exercises



Bibliography



Appendices



A Contour Integrals for the Fundamental Solution



B Curvature of Plane Curves



C
Integrals for Droplet Nucleation

Erscheinungsdatum
Reihe/Serie IOP Concise Physics
Verlagsort San Rafael
Sprache englisch
Maße 178 x 254 mm
Themenwelt Naturwissenschaften Physik / Astronomie Festkörperphysik
Sozialwissenschaften Pädagogik Erwachsenenbildung
Technik Maschinenbau
ISBN-10 1-64327-617-4 / 1643276174
ISBN-13 978-1-64327-617-5 / 9781643276175
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Quantenmechanik | Festkörperphysik

von Gerhard Franz

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 179,95

von Siegfried Hunklinger; Christian Enss

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 132,90

von Rudolf Gross; Achim Marx

Buch | Hardcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 118,90