Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Electronic Properties of Materials - Rolf E. Hummel

Electronic Properties of Materials

(Autor)

Buch | Softcover
2002 | 3. Softcover reprint of the original 3rd ed. 2001
Springer Berlin (Verlag)
978-3-642-86540-4 (ISBN)
CHF 119,75 inkl. MwSt
  • Titel wird leider nicht erscheinen
  • Artikel merken
Books are seldom finished. At best, they are abandoned. The second edition of "Electronic Properties of Materials" has been in use now for about seven years. During this time my publisher gave me ample opportunities to update and improve the text whenever the Ibook was reprinted. There were about six of these reprinting cycles. Eventually, however, it became clear that substantially more new material had to be added to account for the stormy developments which occurred in the field of electrical, optical, and magnetic materials. In particular, expanded sections on flat-panel displays (liquid crystals, electroluminescence devices, field emission displays, and plasma dis. : plays) were added. Further, the recent developments in blue- and green emitting LED's and in photonics are included. Magnetic storage devices also underwent rapid development. Thus, magneto-optical memories, magneto resistance devices, and new' magnetic materials needed to be covered. The sections on dielectric properties, ferroelectricity, piezoelectricity, electrostric tion, and thermoelectric properties have been expanded. Of course, the entire text was critically reviewed, updated, and improved. However, the most extensive change I undertook was the conversion of all equations to SI units throughout. In most of the world and in virtually all of the interna tional scientific journals use of this system of units is required. If today's students do not learn to utilize it, another generation is "lost" on this matter. In other words, it is important that students become comfortable with SI units.

I Fundamentals of Electron Theory.- 1 Introduction.- 2 The Wave-Particle Duality.- Problems.- 3 The Schrödinger Equation.- 3.1. The Time-Independent Schrödinger Equation.- 3.2. The Time-Dependent Schrödinger Equation.- 3.3. Special Properties of Vibrational Problems.- Problems.- 4 Solution of the Schrödinger Equation for Four Specific Problems.- 4.1. Free Electrons.- 4.2. Electron in a Potential Well (Bound Electron).- 4.3. Finite Potential Barrier (Tunnel Effect).- 4.4. Electron in a Periodic Field of a Crystal (the Solid State).- Problems.- 5 Energy Bands in Crystals.- 5.1. One-Dimensional Zone Schemes.- 5.2. One- and Two-Dimensional Brillouin Zones.- 5.3. Three-Dimensional Brillouin Zones.- 5.4. Wigner—Seitz Cells.- 5.5. Translation Vectors and the Reciprocal Lattice.- 5.6. Free Electron Bands.- 5.7. Band Structures for Some Metals and Semiconductors.- 5.8. Curves and Planes of Equal Energy.- Problems.- 6 Electrons in a Crystal.- 6.1. Fermi Energy and Fermi Surface.- 6.2. Fermi Distribution Function.- 6.3. Density of States.- 6.4. Population Density.- 6.5. Complete Density of States Function Within a Band.- 6.6. Consequences of the Band Model.- 6.7. Effective Mass.- 6.8. Conclusion.- Problems.- Suggestions for Further Reading (Part I).- II Electrical Properties of Materials.- 7 Electrical Conduction in Metals and Alloys.- 7.1. Introduction.- 7.2. Survey.- 7.3. Conductivity—Classical Electron Theory.- 7.4. Conductivity—Quantum Mechanical Considerations.- 7.5. Experimental Results and Their Interpretation.- 7.5.1. Pure Metals.- 7.5.2. Alloys.- 7.5.3. Ordering.- 7.6. Superconductivity.- 7.6.1. Experimental Results.- 7.6.2. Theory.- 7.7. Thermoelectric Phenomena.- Problems.- 8 Semiconductors.- 8.1. Band Structure.- 8.2. Intrinsic Semiconductors.- 8.3. Extrinsic Semiconductors.- 8.3.1. Donors and Acceptors.- 8.3.2. Band Structure.- 8.3.3. Temperature Dependence of the Number of Carriers.- 8.3.4. Conductivity.- 8.3.5. Fermi Energy.- 8.4. Effective Mass.- 8.5. Hall Effect.- 8.6. Compound Semiconductors.- 8.7. Semiconductor Devices.- 8.7.1. Metal—Semiconductor Contacts.- 8.7.2. Rectifying Contacts (Schottky Barrier Contacts).- 8.7.3. Ohmic Contacts (Metallizations).- 8.7.4. p—n Rectifier (Diode).- 8.7.5. Zener Diode.- 8.7.6. Solar Cell (Photodiode).- 8.7.7. Avalanche Photodiode.- 8.7.8. Tunnel Diode.- 8.7.9. Transistors.- 8.7.10. Quantum Semiconductor Devices.- 8.7.11. Semiconductor Device Fabrication.- 8.7.12. Digital Circuits and Memory Devices.- Problems.- 9 Electrical Properties of Polymers, Ceramics, Dielectrics, and Amorphous Materials.- 9.1. Conducting Polymers and Organic Metals.- 9.2. Ionic Conduction.- 9.3. Conduction in Metal Oxides.- 9.4. Amorphous Materials (Metallic Glasses).- 9.4.1. Xerography.- 9.5. Dielectric Properties.- 9.6. Ferroelectricity, Piezoelectricity, and Electrostriction.- Problems.- Suggestions for Further Reading (Part II).- III Optical Properties of Materials.- 10 The Optical Constants.- 10.1. Introduction.- 10.2. Index of Refraction, n.- 10.3. Damping Constant, k.- 10.4. Characteristic Penetration Depth, W, and Absorbance, ?.- 10.5. Reflectivity, R, and Transmittance, T.- 10.6. Hagen—Rubens Relation.- Problems.- 11 Atomistic Theory of the Optical Properties.- 11.1. Survey.- 11.2. Free Electrons Without Damping.- 11.3. Free Electrons With Damping (Classical Free Electron Theory of Metals).- 11.4. Special Cases.- 11.5. Reflectivity.- 11.6. Bound Electrons (Classical Electron Theory of Dielectric Materials).- 11.7. Discussion of the Lorentz Equations for Special Cases.- 11.7.1. High Frequencies.- 11.7.2. Small Damping.- 11.7.3. Absorption Near v0.- 11.7.4. More Than One Oscillator.- 11.8. Contributions of Free Electrons and Harmonic Oscillators to the Optical Constants.- Problems.- 12 Quantum Mechanical Treatment of the Optical Properties.- 12.1. Introduction.- 12.2. Absorption of Light by Interband and Intraband Transitions.- 12.3. Optical Spectra of Materials.- 12.4. Dispersion.- Problems.- 13 Applications.- 13.1. Measurement of the Optical Properties.- 13.1.1. Kramers—Kronig Analysis (Dispersion Relations).- 13.1.2. Spectroscopic Ellipsometry.- 13.1.3. Differential Reflectometry.- 13.2. Optical Spectra of Pure Metals.- 13.2.1. Reflection Spectra.- 13.2.2. Plasma Oscillations.- 13.3. Optical Spectra of Alloys.- 13.4. Ordering.- 13.5. Corrosion.- 13.6. Semiconductors.- 13.7. Insulators (Dielectric Materials and Glass Fibers).- 13.8. Emission of Light.- 13.8.1. Spontaneous Emission.- 13.8.2. Stimulated Emission (Lasers).- 13.8.3. Helium—Neon Laser.- 13.8.4. Carbon Dioxide Laser.- 13.8.5. Semiconductor Laser.- 13.8.6. Direct–Versus Indirect–Band Gap Semiconductor Lasers.- 13.8.7. Wavelength of Emitted Light.- 13.8.8. Threshold Current Density.- 13.8.9. Homojunction Versus Heterojunction Lasers.- 13.8.10. Laser Modulation.- 13.8.11. Laser Amplifier.- 13.8.12. Quantum Well Lasers.- 13.8.13. Light-Emitting Diodes (LEDs).- 13.8.14. Liquid Crystal Displays (LCDs).- 13.8.15. Emissive Flat-Panel Displays.- 13.9. Integrated Optoelectronics.- 13.9.1. Passive Waveguides.- 13.9.2. Electro-Optical Waveguides (EOW).- 13.9.3. Optical Modulators and Switches.- 13.9.4. Coupling and Device Integration.- 13.9.5. Energy Losses.- 13.9.6. Photonics.- 13.10. Optical Storage Devices.- 13.11. The Optical Computer.- 13.12. X-Ray Emission.- Problems.- Suggestions for Further Reading (Part III).- IV Magnetic Properties of Materials.- 14 Foundations of Magnetism.- 14.1. Introduction.- 14.2. Basic Concepts in Magnetism.- 14.3. Units.- Problems.- 15 Magnetic Phenomena and Their Interpretation—Classical Approach.- 15.1. Overview.- 15.1.1. Diamagnetism.- 15.1.2. Paramagnetism.- 15.1.3. Ferromagnetism.- 15.1.4. Antiferromagnetism.- 15.1.5. Ferrimagnetism.- 15.2. Langevin Theory of Diamagnetism.- 15.3. Langevin Theory of (Electron Orbit) Paramagnetism.- 15.4. Molecular Field Theory.- Problems.- 16 Quantum Mechanical Considerations.- 16.1. Paramagnetism and Diamagnetism.- 16.2. Ferromagnetism and Antiferromagnetism.- Problems.- 17 Applications.- 17.1. Introduction.- 17.2. Electrical Steels (Soft Magnetic Materials).- 17.2.1. Core Losses.- 17.2.2. Grain Orientation.- 17.2.3. Composition of Core Materials.- 17.2.4. Amorphous Ferromagnetics.- 17.3. Permanent Magnets (Hard Magnetic Materials).- 17.4. Magnetic Recording and Magnetic Memories.- Problems.- Suggestions for Further Reading (Part IV).- V Thermal Properties of Materials.- 18 Introduction.- 19 Fundamentals of Thermal Properties.- 19.1. Heat, Work, and Energy.- 19.2. Heat Capacity, C?.- 19.3. Specific Heat Capacity, c.- 19.4. Molar Heat Capacity, Cv.- 19.5. Thermal Conductivity, K.- 19.6. The Ideal Gas Equation.- 19.7. Kinetic Energy of Gases.- Problems.- 20 Heat Capacity.- 20.1. Classical (Atomistic) Theory of Heat Capacity.- 20.2. Quantum Mechanical Considerations—The Phonon.- 20.2.1. Einstein Model.- 20.2.2. Debye Model.- 20.3. Electronic Contribution to the Heat Capacity.- Problems.- 21 Thermal Conduction.- 21.1. Thermal Conduction in Metals and Alloys—Classical Approach.- 21.2. Thermal Conduction in Metals AlloysMechanical and —Quantum Considerations.- 21.3. Thermal Conduction in Dielectric Materials.- Problems.- 22 Thermal Expansion.- Problems.- Suggestions for Further Reading (Part V).- Appendices.- App. 1. Periodic Disturbances.- App. 2. Euler Equations.- App. 3. Summary of Quantum Number Characteristics.- App. 4. Tables.- App. 5. About Solving Problems and Solutions to Problems.

Erscheinungsdatum
Verlagsort Berlin
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Development • dielectric properties • electricity • magnetic material • Material • Photonics • piezoelectricity
ISBN-10 3-642-86540-2 / 3642865402
ISBN-13 978-3-642-86540-4 / 9783642865404
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
CHF 119,95