Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Modern Digital Radio Communication Signals and Systems (eBook)

eBook Download: PDF
2018 | 1st ed. 2019
XV, 664 Seiten
Springer International Publishing (Verlag)
978-3-319-71568-1 (ISBN)

Lese- und Medienproben

Modern Digital Radio Communication Signals and Systems - Sung-Moon Michael Yang
Systemvoraussetzungen
223,63 inkl. MwSt
(CHF 218,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book serves as an easily accessible reference for wireless digital communication systems. Topics are presented with simple but non-trivial examples and then elaborated with their variations and sophistications. It includes numerous examples and exercises to illustrate key points. The book emphasizes both practical problem solving and a thorough understanding of fundamentals, aiming to realize the complementary relationship between practice and theory. Though the author emphasize wireless radio channels, the fundamentals that are covered are useful to different channels - digital subscriber line, coax, power lines, optical fibers, and even Gigabit serial interconnection.

This book is the outgrowth of the author's hands-on experience in the telecommunication systems industry as a research and development engineer. It is written primarily for practitioners of wireless digital communication systems - engineers and technical leaders and managers - and for digital communication systems in general including new comers like graduate students and upper-division undergraduate students.

The material in chapters 5(OFDM), 6(Channel coding), 7(Synchronization) and 8(Transceivers) contains something new, not explicitly available in typical textbooks, and useful in practice. For example, in Chapter 5, all known orthogonal frequency division multiplex signals are formulated based on pulse shape and thus flexible, e.g., unlike currently predominant symbol block transmission, it can be serial transmission. In Chapter 6, we emphasize practical applications of powerful error coding such as LDPC to higher order modulations, fading, and non-linearity problem. In Chapter 7, new digital timing detectors are suggested for small access bandwidth shaping pulse, and a digital quadrature imbalance correction is also included along with digital carrier phase recovery. In Chapter 8, low IF digital image cancelling transceiver is treated in detail so that practical implementation can be readily done with advantages. 



Dr. Sung-Moon Michael Yang is a practicing communication systems engineer with emphasis on wireless communication systems. While in his career he worked mostly fulltime for the communication industry in Silicon Valley and more recently in Southern California, on the design and development of wireless system products as well as integrated circuit components, he also taught wireless communication systems and digital signal processing part time at various universities. He received BS from Seoul National University, Seoul, Korea, and MS and PhD from UCLA, all in Electrical Engineering.

Dr. Sung-Moon Michael Yang is a practicing communication systems engineer with emphasis on wireless communication systems. While in his career he worked mostly fulltime for the communication industry in Silicon Valley and more recently in Southern California, on the design and development of wireless system products as well as integrated circuit components, he also taught wireless communication systems and digital signal processing part time at various universities. He received BS from Seoul National University, Seoul, Korea, and MS and PhD from UCLA, all in Electrical Engineering.

Preface 5
Contents 7
About the Author 15
Chapter 1: Overview of Radio Communication Signals and Systems 16
1.1 Examples of Wireless Communication Systems 19
1.2 Overview of Wireless Communication Systems 21
1.2.1 Continuous Wave (CW) Signals 23
1.2.2 Complex Envelope and Quadrature Modulation 24
1.2.3 Digital Modulations 25
1.2.4 Pulse-Shaping Filter 25
1.2.5 Channel Coding 26
1.2.6 Demodulation and Receiver Signal Processing 28
1.2.6.1 CW Signal to Complex Envelope (D-C) 29
1.2.6.2 Analog Complex Envelope (AI and AQ) Is Sampled (C-B) 30
1.2.6.3 Digital Demodulation and Decision (B-B1) 31
1.2.7 Synchronization and Channel Estimation 33
1.2.8 More Modulation and Demodulation Processing 34
1.2.8.1 DS Spread Spectrum System 34
1.2.8.2 OFDM and FH Spread Spectrum 34
1.2.8.3 Diversity Channels (Frequency, Time, Space) 35
1.2.9 Radio Propagation Channels 37
1.2.10 Extension to Optical Fiber and Other Systems 38
1.2.11 Summary of the Overview 39
1.3 The Layered Approach 40
1.4 Historical Notes 40
1.5 Organization of the Book 42
1.6 Reference Example and its Sources 42
References 42
Reference Sources 43
Chapter 2: Digital Modulations 44
2.1 Constellation, Complex Envelope, and CW 47
2.1.1 OOK, BPSK, and Orthogonal (M = 2) 48
2.2 Power of Digitally Modulated Signals and SNR 52
2.2.1 Discrete Symbol Average Power () Computation 53
2.2.2 Power Spectral Density 53
2.2.3 Signal Power and Noise Power Ratio (SNR) 54
2.3 MAP and ML Detectors 55
2.3.1 Symbol Error Rate of BPSK Under AWGN Channel 57
2.3.2 SER of OOK and Orthogonal Signaling (M = 2) Under AWGN Channel 58
2.4 PAM, QAM, and PSK 61
2.4.1 M-PAM 61
2.4.1.1 SER of M-PAM Under AWGN Channel 63
2.4.2 Square M-QAM 63
2.4.2.1 SER of Square QAM 66
2.4.2.2 Double Square (DSQ) Constellations 70
2.4.3 PSK, APSK, and DPSK 72
2.4.3.1 APSK 74
2.4.3.2 Partially Coherent Detection (of DPSK) and Noncoherent Detection (of FSK) 75
2.5 BER and Different Forms of SNR 75
2.5.1 BER Requires a Specific Bit to Symbol Mapping 76
2.5.2 A Quick Approximation of SER to BER Conversion 76
2.5.3 Numerical Simulations of BER with LLR 77
2.5.4 SNR in Different Forms 80
2.6 Offset QAM (or Staggered QAM) 81
2.6.1 SER Versus Performance of Staggered QAM 83
2.6.2 CCDF of Staggered QAM Versus of ``Regular´´ QAM 83
2.6.3 Other Issues 84
2.7 Digital Processing and Spectrum Shaping 85
2.7.1 Scrambler 85
2.7.1.1 Properties of PN Sequence 86
2.7.1.2 Primitive Polynomials for PN Sequence 87
2.7.1.3 Another Type of Scrambler 88
2.7.2 Differential Coding or Phase Invariance Coding 89
2.7.2.1 180 Phase Invariance Coding 89
2.7.2.2 Multi Bit Extension of 180 Phase Invariance Coding 90
2.7.2.3 90 Rotation Invariance 91
2.7.2.4 Rotational Invariance of 16-QAM 91
2.7.3 Partial Response Signaling 93
2.7.3.1 1 + D Duo-Binary Digital Filter 93
2.7.3.2 Performance of 1 + D System with Symbol By-Symbol Detection 95
2.7.3.3 Performance of 1 + D System with an Analog (1 + D) Matched Filter 97
2.7.3.4 QPRS 99
2.7.3.5 (1 - D2) Modified Duo-Binary 99
2.7.3.6 Additional Example of PRS: 1 + 2D + D2 101
2.8 Frequency Modulation: FSK, MSK, and CPFSK 101
2.8.1 Examples of FSK Signal Generation 103
2.8.2 Noncoherent Demodulation of FSK 104
2.8.3 FSK Signal Generations Using Quadrature Modulator 104
2.8.4 Binary CPFSK Example 107
2.8.5 M-Level CPFSK 107
2.8.6 MSK 108
2.8.7 FSK with Gaussian Pulse 110
2.8.8 Power Spectral Density of CPFSK, MSK, and GMSK 112
2.8.9 Partial Response CFSK 112
2.8.10 SER Performance Analysis of CPFSK 112
2.9 PSD of Digitally Modulated Signals 116
2.9.1 Power Spectral Density of PAM Signal 117
2.9.2 PSD of Quadrature Modulated Signals 120
2.9.3 PSD of FDM and OFDM Signals 120
2.9.4 PSD Numerical Computations and Measurements 121
2.9.5 Numerical Computation of PSD Using FFT 122
2.9.6 Example of PSD Computation by Using FFT 124
2.9.7 PSD of Digital FM Signals: FSK and CPFSK 124
2.9.8 PSD Computation Using Correlation 125
2.10 Chapter Summary and Reference 126
2.10.1 Summary 126
2.10.2 References 127
References 127
Chapter 3: Matched Filter and Nyquist Pulse 128
3.1 Matched Filters 131
3.1.1 Matched Filter Defined and Justified 132
3.1.2 Examples of Matched Filters 134
3.1.3 Characteristic of Matched Filters 136
3.1.4 SNR Loss Due to Pulse Mismatch 137
3.1.5 A Mismatch Loss Due to Receiver Noise Bandwidth 139
3.2 Nyquist Criterion: ISI-Free Pulse 141
3.2.1 Nyquist Criterion: ISI-Free End-to-End Pulse 141
3.2.2 Frequency Domain Expression of Nyquist Criterion 143
3.2.3 Band Edge Vestigial Symmetry and Excess Bandwidth 145
3.2.4 Raised Cosine Filter 147
3.3 Shaping Pulse (Filter) Design 149
3.3.1 Practical Design Considerations 150
3.3.2 A Practical Design Example of Analog Filter 150
3.3.3 Design of Digital Matched Filters 152
3.3.3.1 Windowing Method 152
3.3.3.2 Frequency Domain Optimization Method 154
3.4 Performance Degradation Due to ISI 157
3.4.1 A Design Case to Simplify the Shaping Filters 157
3.4.2 A Quick Analysis of the Suggestion Using a Rectangular Pulse 158
3.4.2.1 Mismatch Loss 159
3.4.2.2 SNR Loss Due to ISI 159
3.4.2.3 Peak Distortion Estimation Method 161
3.4.2.4 Eye Pattern 161
3.4.3 A Discrete-in-Time Model for ISI Analysis in General 163
3.4.4 A Discrete-in-Time Model for Simulation 166
3.4.5 Summary for ISI Analysis Methods 166
3.5 Extension to Linear Channel and Nonwhite Noise 167
3.5.1 Linear Channels with White Noise 167
3.5.2 Nonwhite Noise 169
3.6 References 169
Chapter 4: Radio Propagation and RF Channels 170
4.1 Path Loss of Radio Channels 172
4.1.1 Free Space Loss 173
4.1.2 Path Loss Exponent 174
4.2 Antenna Basic and Antenna Gain 175
4.2.1 Antenna Basics 175
4.2.2 Antenna Pattern 176
4.2.3 Directivity and Antenna Gain 176
4.2.4 Aperture Concept and Antenna Beam Angle 177
4.3 Path Loss Due to Reflection, Diffraction, and Scattering 178
4.3.1 Ground Reflection (Two-Ray Model) 179
4.3.2 Diffraction, Fresnel Zone, and Line of Sight Clearance 181
4.3.3 Examples of Empirical Path Loss Model 182
4.3.4 Simplified Path Loss Model 182
4.3.5 Shadow Fading: Variance of Path Loss 183
4.3.5.1 Fade Margin and Reliability 185
4.3.6 Range Estimation and Net Link Budget 185
4.3.6.1 Thermal Noise 186
4.3.6.2 Example of Range Estimation 186
4.3.6.3 Range Comparison with Different Path Loss Exponent 188
4.4 Multipath Fading and Statistical Models 188
4.4.1 Intuitive Understanding of Multipath Fading 189
4.4.1.1 Doppler Frequency 190
4.4.2 Rayleigh Fading Channels 190
4.4.2.1 Doppler Spectrum with Uniform Scattering: Jakes Spectrum 191
4.4.2.2 Rayleigh Fading Channel Implementation 192
4.4.2.3 Rayleigh Fading of Power Distribution 193
4.4.2.4 Raleigh Envelope Distribution 194
4.4.2.5 Rice (LOS Component) 194
4.4.2.6 Two Independent Zero Mean Gaussian Sample Generation 195
4.4.3 Wideband Frequency-Selective Fading 196
4.4.3.1 A Sampled (Discrete-Time) Channel Model 197
4.4.3.2 Finding the Channel Coefficients of a Sampled Model 198
4.4.3.3 Frequency-Selective Channel Example 199
4.4.3.4 On the Computation of Ai(kDeltat) 200
4.4.4 Alternative Approach to Fading Channel Models 200
4.4.4.1 A Channel Model with Scattering Description 200
4.4.4.2 A Channel Model with Transmit and Receive Filters 201
4.4.4.3 A Simplification when a Delay Profile Is Discrete in Time 203
4.4.4.4 A Sampled Channel Model: Monte Carlo Method 204
4.4.4.5 How to Incorporate Rician Fading Case 206
4.4.4.6 Further Development of Monte Carlo Method 206
4.5 Channel Sounding and Measurements 207
4.5.1 Direct RF Pulse 208
4.5.2 Spread Spectrum Signal (Time Domain) 209
4.5.2.1 Test Signal Design Problem 209
4.5.3 Chirp Signal (Frequency Sweep Signal) for Channel Sounding 211
4.5.4 Synchronization and Location 212
4.5.5 Directionally Resolved Measurements (Angle Spread Measurements) 212
4.5.5.1 Measurement with an Antenna Array 212
4.5.5.2 More Topics with Multiple Antenna Channel Measurement Not Covered 213
4.6 Channel Model Examples 213
4.6.1 Empirical Path Loss Models 213
4.6.2 M1225 of ITU-R Path Loss Models 214
4.6.3 Multipath Fading Models in Cellular Standards 214
4.6.3.1 GSM Channels 214
4.6.4 Cellular Concept and Interference Limited Channels 215
4.6.4.1 Cellular Frequency Reuse 216
4.6.4.2 Cluster Size (K) and Co-Channel Interference Distance (D) 217
4.6.4.3 Cluster Size with Hexagons 217
4.6.4.4 Co-Channel Interference 220
4.6.4.5 Use of Repeaters and Distributed Antennas 222
4.6.5 Channel Models of Low Earth Orbit (LEO) Satellite 222
4.6.5.1 Geometry of LEO 223
4.6.5.2 Fading Channel Model Due to Satellite Orbiting 223
4.6.5.3 Cosine Loss of Phased Array Antenna 225
4.7 Summary of Fading Countermeasures 225
4.8 References with Comments 227
Antenna Areas 229
Mobile Fading Channel Model 229
More Wireless Channel Model and References 229
Chapter 5: OFDM Signals and Systems 230
5.1 DMT with CP: Block Transmission 235
5.1.1 IDFT-DFT Pair as a Transmission System 235
5.1.2 Cyclic Prefix Added to IDFT-DFT Pair 237
5.1.3 Transmit Spectrum 238
5.1.4 OFDM Symbol Boundary with CP 241
5.1.4.1 OFDM Symbol Boundary Using CP 242
5.1.5 Receiver Processing When the Channel Dispersion < CP
5.1.5.1 Gain and Phase Adjustment: ``One-Tap Equalizer´´ 244
5.1.5.2 System Degradation if Delay Spread Is Bigger than CP 244
5.1.6 SNR Penalty of the Use of CP 245
5.2 CP Generalized OFDM: Serial Transmission 246
5.2.1 OFDM: Analog Representation 246
5.2.2 Discrete Signal Generation of Analog OFDM 247
5.2.3 Discrete Signal Reception 250
5.2.4 Pulse Shape of DMT and Its End-to-End Pulse 252
5.2.5 Windowing 253
5.2.6 Filter Method Compared with DMT with CP 254
5.3 Filtered OFDM 254
5.3.1 Filtered OFDM Signal Generation 255
5.3.1.1 Transmit Spectrum of Filtered OFDM 258
5.3.2 Filtered OFDM Signal Reception 259
5.3.3 Common Platform 260
5.3.4 Impulse Response and Eye Pattern 261
5.3.5 One-Tap Equalizer, Sample Timing and Carrier Phase Recovery, and Channel Estimation 263
5.3.6 Regular FDM Processing with Filtered OFDM 263
5.4 OFDM with Staggered QAM 264
5.4.1 Common Platform Structure for OFDM with Staggering 265
5.4.2 Receiver Side of OFDM with Staggered QAM 268
5.4.3 T/2 Base Implementation of Transmit Side 271
5.4.4 Impulse Response, Eye Pattern, and Constellation of Staggered OFDM 272
5.5 Practical Issues 277
5.5.1 Performance When a Channel Delay Spread > CP
5.5.1.1 Performance Analysis with a Linear Channel 277
5.5.2 Digital Quadrature Modulation to IF and IF Sampling 278
5.5.2.1 IF Sampling at Receive Side 280
5.5.3 Modern FH Implementation with OFDM 282
5.5.4 Naming of OFDM Signals 282
5.6 OFDM with Coding 283
5.6.1 Coded Modulations for Static Frequency-Selective Channels 283
5.6.2 Coding for Doubly Selective Fading Channels 284
5.6.2.1 Subchannel Fermutation (pi5) 284
5.6.2.2 Coded Modulation (CMR) for Rayleigh Fading Channels 285
5.6.2.3 Binary FECb 287
5.7 Chapter Summary 287
5.8 References 288
Appendix 5 289
A.1 Matlab Program 289
A.2 FDM Signal Example 291
Chapter 6: Channel Coding 292
6.1 Code Examples and Introduction to Coding 294
6.1.1 Code Examples: Repetition and Parity Bit 294
6.1.2 Analytical WER Performance 298
6.1.2.1 Independence and Mutually Exclusive Assumptions 299
6.1.2.2 Analytical Performance with HD 300
6.2 Linear Binary Block Codes 301
6.2.1 Generator and Parity Check Matrices 302
6.2.1.1 Dual Code 303
6.2.1.2 Weight and Distance of Linear Block Codes 303
6.2.2 Hamming Codes and Reed-Muller Codes 304
6.2.2.1 Hamming Codes 304
6.2.2.2 Hard Decision Decoding 304
6.2.2.3 HD Decoding Performance of (7, 4) Hamming 307
6.2.2.4 Dual of Hamming Code Is Maximal Length Code 307
6.2.2.5 Reed-Muller Code 307
6.2.3 Code Performance Analysis of Linear Block Codes* 309
6.2.3.1 Correlation Metric (CM) Decoding 310
6.2.3.2 Computation of WER of Linear Block Codes 314
6.2.3.3 Additional Comments on the WER Computation for Linear Block Codes 318
6.2.4 Cyclic Codes and CRC 319
6.2.4.1 Cyclic Codes 319
6.2.4.2 Generator Polynomial 320
6.2.4.3 Transmission Sequence of a Codeword and Its Code Polynomial 322
6.2.4.4 Remainder Computation with Shift Register Circuits 324
6.2.4.5 Syndrome Computation with the Shift Register Circuits 325
6.2.4.6 CRC 327
6.2.4.7 Decoding Cyclic Codes 328
6.2.5 BCH and RS Codes 330
6.2.5.1 BCH Codes 330
6.2.5.2 RS Codes 334
6.2.6 Algebraic Decoding of BCH 335
6.2.6.1 A Block Diagram of Algebraic Decoding Process 336
6.2.6.2 Syndrome Computation from r(X): Method A 337
6.2.6.3 Find Error Location Polynomial Degree t or Less ?(X) 338
6.2.6.4 Find Zeros of ?(X) an Error Location Polynomial 338
6.2.7 Code Modifications: Shortening, Puncturing, and Extending 338
6.3 Convolutional Codes 339
6.3.1 Understanding Convolutional Code 340
6.3.1.1 Example of G = 15/13 RSC 340
6.3.1.2 G = 7|5 Non-systematic Convolutional Code Example 344
6.3.1.3 Recursive Form of G = 7/5 Convolutional Code 344
6.3.1.4 Optimum Convolutional Code Tables 345
6.3.1.5 Block Codes from Convolutional Codes 346
6.3.1.6 Input Weight and Output Distance of Convolutional Codes 349
6.3.1.7 Optimized Computation of A(w, d) 353
6.3.2 Viterbi Decoding of Convolutional Codes 354
6.3.2.1 Review of CM and Its Use as Branch Metric 354
6.3.2.2 Viterbi Decoding Explained with an Example of HD 355
6.3.2.3 Viterbi Decoding Explained with an Example of SD 356
6.3.2.4 Viterbi Decoding with Quantized SD 358
6.3.2.5 Why Viterbi Decoding Is Effective? 359
6.3.2.6 Summary of Viterbi Decoding Algorithm 359
6.3.2.7 Branch Metric Revisited 360
6.3.3 BCJR Decoding of Convolutional Codes 360
6.3.3.1 Notations 361
6.3.3.2 BCJR Algorithm (Forward-Backward Algorithm) 362
6.3.3.3 Computation of APP of Information and Transmit Digits 365
6.3.3.4 Channel Model and Branch Metric 366
6.3.3.5 Numerical Example of BCJR Decoding of Fig. 6.34 367
6.3.3.6 Summary of BCJR Algorithm 372
6.3.4 Other Topics Related with Convolutional Codes 372
6.3.4.1 Trellis Representation of Block Codes 373
6.3.4.2 Other Decoding Techniques of Convolutional Codes 375
6.4 LDPC 375
6.4.1 Introduction to LDPC Code 375
6.4.1.1 Graphical Representation of LDPC Code 377
6.4.1.2 A Numerical Example of Tanner Graph as a Decoder 377
6.4.2 LDPC Decoder 380
6.4.3 Bit Node Updating Computation 380
6.4.3.1 Check Node Updating Computation 383
6.4.3.2 Updating qi: Computation of APP of pi 385
6.4.3.3 The Computational Organization with H Edge Tables 386
6.4.4 LDPC Encoder 388
6.4.4.1 Encoder with a Special Form of H: Band Diagonal 389
6.4.4.2 Different Encoder Implementation of RA Form 389
6.4.5 Useful Rules and Heuristics for LDPC Code Construction 392
6.4.5.1 Definition of Cycle and Trapping (Stopping) Set 392
6.4.5.2 Properties of H Related with and Useful to Code Construction 398
6.4.6 LDPC in Standards 400
6.5 Turbo Codes 403
6.5.1 Turbo Encoding with G = 15/13 RSC and Permutation 406
6.5.2 G = 15/13 Code Tables for BCJR Computation Organization 406
6.5.3 The Generation of ``Extrinsic´´ Information (E1, E2) 407
6.5.4 Numerical Computations of Iterative Turbo Decoding 409
6.5.5 Additional Practical Issues 414
6.5.5.1 Decoding Computation in Log Domain 415
6.5.5.2 Permutations (Interleaver) 415
6.5.5.3 Constituent Convolution Codes 416
6.6 Coding Applications 418
6.6.1 Coded Modulations 419
6.6.1.1 LLR Computations of Multi-Level Constellations 421
6.6.1.2 Performance of 8-DSQ and 8-PSK with LDPC Code 422
6.6.1.3 More Coded Modulation Examples with 16QAM and 64QAM 424
6.6.1.4 Gray Bit Assignment 426
6.6.1.5 On Permutation, Interleaver, and Scrambler 426
6.6.2 MLCM, TCM, and BICM 428
6.6.2.1 A Brief History of MLCM, TCM, and BICM 428
6.6.2.2 MLCM Idea 429
6.6.2.3 MLCM Mapper (64QAM Example) 430
6.6.2.4 MLCM Implementation with N = 1944 LDPC 430
6.6.2.5 Performance Comparison of MLCM with BICM 431
6.6.2.6 An Extension to 5.5 Bits/Symbol, 5.25 Bits/Symbol, and 5.75 Bits/Symbol 431
6.6.2.7 An Example of MLCM to 128 DSQ 432
6.6.2.8 An MLCM Mapper with 128 Points and Its Extensions 434
6.6.3 Channel Capacity of AWGN and of QAM Constellations 436
6.6.4 PAPR Reduction with Coding 438
6.6.5 Fading Channels 440
6.6.5.1 Degradation of SER Performance Due to Rayleigh Fading 440
6.6.5.2 Fading as a Random Fluctuation of SNR 441
6.6.5.3 Channel Capacity of Rayleigh Fading Channel 443
6.6.5.4 Channel Capacity of Frequency-Selective Fading Channel 445
6.6.5.5 Evaluate (6.55) when peEsNoAWGNIs Available as Numerical Data 446
6.7 References with Comments 446
References 447
Appendix 6 447
A.1 CM Decoding Example of Fig. 6.37 447
A.2 The Computation of p0 (p1) and LLR for BPSK 449
A.3 Different Expressions of Check Node LLR of LDPC 450
A.4 Computation of Channel Capacity 453
A.5 SER Performance of Binary PSK, DPSK, and FSK 456
Chapter 7: Synchronization of Frame, Symbol Timing, and Carrier 457
7.1 Packet Synchronization Examples 463
7.1.1 PLCP Preamble Format of IEEE 802.11a 464
7.1.1.1 Short-Term Training Sequence (STS) 465
7.1.1.2 Long-Term Training Sequence (LTS) 466
7.1.2 RCV Processing of STS and LTS 467
7.1.2.1 Matched Filter Algorithm 468
7.1.2.2 STS Processing Detail 471
16-Sample Boundary Recovery 471
Carrier Frequency Offset Estimation 473
Carrier Phase Estimation 474
SNR Estimation 474
7.1.2.3 LTS Processing Detail 474
OFDM Symbol Boundary from LTS Processing 475
7.1.3 802.11a Synchronization Performance 476
7.1.3.1 Overall Performance Target 476
7.1.3.2 STS and LTS Performance for Flat Channel 478
7.1.3.3 STS and LTS Performance for Frequency-Selective Channel 478
7.1.4 DS Spread Spectrum Synchronization Example 480
7.1.4.1 Acquisition and Tracking with Analog Matched Filter 481
7.1.4.2 Digital Matched Filter Implementation 482
7.1.4.3 Weak Signal Initial Code Phase Synchronization 483
7.2 Symbol Timing Synchronization 483
7.2.1 Symbol Timing Error Detector for PAM/QAM 484
7.2.1.1 Closed Form Expression of Timing Detector for Band-Limited Signals 485
Evaluation of (7.8) with Specific Delta 486
Concrete Examples of C1(Delta) Values 487
Importance of Pre-filtering 487
7.2.2 Known Digital Timing Error Detectors 488
7.2.2.1 Extensions of Known Timing Detectors 491
7.2.2.2 Timing Detectors Related with One in Fig. 7.26 492
7.2.2.3 Gardner´s Timing Detector and Its Extension 493
7.2.3 Numerical Computation of S-Curve of Timing Error Detectors 495
7.2.4 Timing Detectors with Differentiation or with Hilbert Transform 498
7.2.5 Intuitive Understanding of Timing Detectors 499
7.2.6 Carrier Frequency Offset Estimation 499
7.2.7 Embedding Digital TED into Timing Recovery Loop 503
7.2.8 Resampling and Resampling Control 505
7.2.9 Simulations of Doppler Clock Frequency Shift 510
7.2.9.1 Doppler Frequency Shift 510
7.2.9.2 Simulation Model of Doppler Clock Frequency Shift 511
7.3 Carrier Phase Synchronization 514
7.3.1 Carrier Recovery Loop and Its Components 515
7.3.2 Phase-Locked Loop Review 516
7.3.3 Understanding Costas Loop for QPSK 516
7.3.4 Carrier Phase Detectors 518
7.3.5 All Digital Implementations of Carrier Recovery Loop 520
7.4 Quadrature-Phase Imbalance Correction 521
7.4.1 IQ Imbalance Model 522
7.4.2 , ?i and ?d Measurements 525
7.4.3 Two-Step Approach for the Estimation of of , ?i, and ?d 527
7.4.4 Additional Practical Issues 528
7.4.5 Summary of IQ Phase Imbalance Digital Correction 529
7.5 References with Comments 529
For digital symbol timing synchronization 529
Textbook chapters on synchronization 530
Early papers on synchronization 530
Appendix 7 530
A.1 Raised Cosine Pulse and Its Pre-filtered RC Pulse 530
A.2 Poisson Sum Formula for a Correlated Signal 531
A.3 Review of Phase-Locked Loops 532
A.4 Polynomial Interpolation: Farrow Structure 538
Chapter 8: Practical Implementation Issues 543
8.1 Transceiver Architecture 545
8.1.1 Direct Conversion Transceiver 546
8.1.2 Heterodyne Conversion Transceiver 548
8.1.3 Implementation Issues of Quadrature Up Conversion 548
8.1.4 Implementation Issues of Quadrature Down Conversion 552
8.1.5 SSB Signals and Image Cancellation Schemes 554
8.1.6 Transceiver of Low Digital IF with Image Cancelling 557
8.1.6.1 TX Signal Generation of Digital Image-Cancelling Transceiver 560
8.1.6.2 RX Signal Processing of Digital Image-Cancelling Transceiver 561
8.1.6.3 Filtering Considerations for Digital Image-Cancelling Transceiver 567
8.1.6.4 Digital IF Modulation and Demodulation 570
8.1.6.5 Interpolation and Decimation Digital Filters 571
8.1.6.6 Implementation Example of Digital IF Image-Cancelling Blocks 573
8.1.6.7 Effects of Quadrature Amplitude and Phase Imbalance to Image Cancellation 575
8.1.6.8 DC Offset: Filtering and Cancellation 579
8.1.6.9 Different Transceiver Architectures with Digital IF 583
8.1.6.10 Alternative Form of Interpolation and Decimation of OFDM Signals 584
8.1.6.11 Multichannel Processing with Digital IF 585
8.1.6.12 Summary of Digital Image-Cancelling Transceiver 586
8.1.7 Calibration of Quadrature Modulator/Demodulator 587
8.1.8 Summary of Transceiver Architectures 589
8.2 Practical Issues of RF Transmit Signal Generation 589
8.2.1 DAC 591
8.2.2 Transmit Filters and Complex Baseband Equivalence 596
8.2.3 TX Signal Level Distribution and TX Power Control 598
8.2.4 PA and Non-linearity 601
8.2.5 Generation of Symbol Clock and Carrier Frequency 609
8.2.6 Summary of RF Transmit Signal Generation 611
8.3 Practical Issues of RF Receive Signal Processing 611
8.3.1 ADC 612
8.3.2 RX Filters and Complex Baseband Representation 616
8.3.3 RCV Dynamic Range and AGC 617
8.3.4 LNA, NF, and Receiver Sensitivity Threshold 621
8.3.5 Regeneration of Symbol Clock and Carrier Frequency 623
8.3.6 Summary of RF Receive Signal Processing 624
8.4 Chapter Summary and References with Comments 624
8.4.1 Chapter Summary 624
8.4.2 References with Comments 624
References 625
Chapter 9: Review of Signals and Systems and of Probability and Random Processes 626
9.1 Continuous-Time Signals and Systems 627
9.1.1 Impulse Response and Convolution Integral: Time Domain 627
9.1.2 Frequency Response and Fourier Transform 631
9.1.3 Signal Power and Noise Power 633
9.1.3.1 Computation of CW Signal Power from Baseband Signal 635
9.1.3.2 Computation of Signal Power from Complex Envelope 635
9.1.3.3 Power Gain Through a Filter and Spectral Density 636
9.1.3.4 Noise Power and Noise Power Spectral Density 638
9.1.3.5 Noise Power After Passing Through a Receive Filter (Fig. 9.13) 640
9.2 Review of Discrete-Time Signals and Systems 641
9.2.1 Discrete-Time Convolution Sum and Discrete-Time Unit Impulse 642
9.2.2 Discrete Fourier Transform Properties and Pairs 643
9.3 Conversion Between Discrete-Time Signals and Continuous-Time Signals 645
9.3.1 Discrete-Time Signal from Continuous-Time Signal by Sampling 645
9.3.2 Continuous-Time Signals from Discrete-Time Signal by De-Sampling (Interpolation) 647
9.4 Probability, Random Variable, and Process 649
9.4.1 Basics of Probability 649
9.4.2 Conditional Probability 650
9.4.3 Probability of Independent Events 652
9.4.4 Random Variable and CDF and PDF 653
9.4.5 Expected Value (Average) 654
9.4.6 Some Useful Probability Distributions (Table 9.3) 655
9.4.7 Q(x) and Related Functions and Different Representations 655
9.4.8 Stochastic Process 655
9.4.9 Stationary Process, Correlation, and Power Density Spectrum 659
9.4.10 Processes Through Linear Systems 659
9.4.11 Periodically Stationary Process 660
9.5 Chapter Summary and References with Comments 661
9.5.1 Chapter Summary 661
9.5.2 References with Comments 661
References 661
Correction to: Modern Digital Radio Communication Signals and Systems 662
Index 673

Erscheint lt. Verlag 4.6.2018
Zusatzinfo XV, 664 p. 674 illus., 265 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Communication theory • digital communication • non-linearity • Radio Propagation • Symbol timing • Wireless Communication Systems
ISBN-10 3-319-71568-2 / 3319715682
ISBN-13 978-3-319-71568-1 / 9783319715681
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Herbert Voß

eBook Download (2025)
Lehmanns Media (Verlag)
CHF 19,50
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel …

eBook Download (2024)
Carl Hanser Fachbuchverlag
CHF 68,35