Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
31st International Symposium on Shock Waves 2 -

31st International Symposium on Shock Waves 2

Applications
Media-Kombination
XX, 1186 Seiten | Ausstattung: Hardcover
2019 | 1st ed. 2019
Springer International Publishing
978-3-319-91016-1 (ISBN)
CHF 519,95 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
This is the second volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction,shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields.
Chapter "Effects of Liquid Impurity on Laser-Induced Gas Breakdown in Quiescent Gas: Experimental and Numerical Investigations" is available open access under a Creative Commons Attribution 4.0 International License at link.springer.com.

  

Chapter1.Strength and Frequency of Underwater Shock Waves Related to Sterilization Effects on a Marine Bacterium.- Chapter2.Effects of Liquid Impurity on Laser-Induced Gas Breakdown in Quiescent Gas: Experimental and Numerical Investigations.- Chapter3.Air Blast from a Structural Reactive Material Solid.- Chapter5.Experimental study on Configuration Effects of Supersonic Projectiles in Transitional Ballistic Regimes.- Chapter6.Non-Ideal Blast Waves from Particle-Laden Explosives.- Chapter7.Attenuation of Blast Wave in a Duct with Expansion Region (Effects of configuration, porous panel, and acoustic material).- Chapter8.Enhancement of Deflagration-to-Detonation Transition Process with Energetic Solid Particle.- Chapter9.Large Scale Computation of Direct Initiation of Cylindrical Detonations.- Chapter10.Numerical Study on a Cycle of Liquid Pulse Detonation Engines.- Chapter11.Experimental investigate on the flame-shock wave interaction and pressure oscillation in a confined combustion chamber.- Chapter12.The Influence of Spatial Heterogeneity in Energetic Material on Non-ideal Detonation Propagation.- Chapter13.Detonation Experiment Research of Gaseous Mixtures with Suspended Metal Particles.- Chapter14.Large Eddy Simulation of Mixing Characteristic in the Cold Rotating-Detonation Chamber.- Chapter15.Research on the Continuous Rotating Detonation Wave in a Hollow Chamber with Laval Nozzle.- Chapter16.Experimental Study on a Long Duration Operation of a Rotating Detonation Engine.- Chapter17.Decaying modes of propagation of spinning detonation and flame front in narrow channel.- Chapter18.Measurement of gaseous fuel concentration in rotating detonation engines.- Chapter19.Investigation of High-Frequency Pulse Detonation Cycle with Fuel Phase Transition.- Chapter20.Simulations of Hydrogen Detonation in Vibrational Non-equilibrium .- Chapter21.Aerodynamic Force Measurement in a Large-Scale Shock Tunnel.- Chapter22.Trial Implementation of TiN Surface Coating for a Main Piston Towards Reducing the Opening Time for a Diaphragmless Driver Section.- Chapter23.Aerodynamic Force Measurement Techniques in JF12 Shock Tunnel .- Chapter24.Optimising the X3R Reflected Shock Tunnel Free-Piston Driver for Long Duration Test Times.- Chapter25.Development and Analysis of an Apollo Earth Re-entry Condition with Representative Post-shock Reynolds Number in the X2 Expansion Tunnel.- Chapter26.Liquid-Coupled Dual Piston Driver for Small-Scale Shock Tubes.- Chapter27.Initial testing of a 2m Mach-10 free piston Shock tunnel at CAAA.- Chapter28.CFD Evaluation and Experiment test of  the Running time of the Hypersonic Ludwieg Tube Quiet Wind Tunnel.- Chapter29.Development and Performance Study of Shock Tube with Extended Test-times for Materials Research.- Chapter30.Measurement of Temperature Field around Spiked Bodies at Hypersonic Mach Numbers.- Chapter31.Three-dimensional Laser Interferometric CT density measurement of unsteady flow field around a cylinder induced by discharged shock wave from a cylindrical nozzle.- Chapter32.Curved shock wave propagation in environmental stratosphere by laser ablation.- Chapter33.Hypervelocity tests with a detonation driven expansion tube.- Chapter34.Experiments in HEG related to sonic line and shock stand-off distance on capsule shapes.- Chapter35.Catalytic Recombination Characteristics of Atomic Oxygen on Material Surfaces by Optical Emission Spectroscopy.- Chapter36.Influence of Dual Ignition on Test Conditions of a High Enthalpy Shock Tunnel.- Chapter37.Ablation Measurements in A Low Density Heat Shield Using Ablation Sensor Unit.- Chapter38.The Development of High Enthalpy Reentry Conditions in the X3 Expansion Tube.- Chapter39.Prediction of Intensity Profiles behind a Shock Wave Travelling in Air at Speeds Exceeding 12 km/s.- Chapter40.Revisiting temperature measurements at the focus of spherically converging shocks in argon.- Chapter41.Influence of Matrix Resin on Impact Resistance of CFRP by a Small

Erscheint lt. Verlag 3.4.2019
Zusatzinfo XX, 1186 p. 833 illus., 581 illus. in color. In 2 volumes, not available separately.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 2156 g
Themenwelt Technik Luft- / Raumfahrttechnik
Schlagworte Detonation Technology • Flow visualization • fluid- and aerodynamics • high-speed flow • industrial applications of shockwaves • ISSW31 proceedings • shockwaves and aerospace applications • shockwaves and energy applications
ISBN-10 3-319-91016-7 / 3319910167
ISBN-13 978-3-319-91016-1 / 9783319910161
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?