Bionanocomposites for Packaging Applications (eBook)
XVIII, 290 Seiten
Springer International Publishing (Verlag)
978-3-319-67319-6 (ISBN)
This book presents a unified overview of eco-friendly bionanocomposites on the basis of characterization, design, manufacture, and application. It also explores replacing conventional materials with bionanocomposites with a focus on their use in packaging applications.
In addition, the book broadens readers' insights by providing illustrations and tables summarizing the latest research on the packaging applications of different bionanocomposites.
By offering a detailed account of this field of research and describing real-world applications, it enables researchers, scientists, and professionals in industry to develop a more informed understanding of the need for bionanocomposites in the development of green, biodegradable, and sustainable packaging applications.
Preface 6
Contents 8
About the Editors 15
1 Perspectives of Bio-nanocomposites for Food Packaging Applications 17
Abstract 17
1.1 Introduction 17
1.2 Biopolymers 18
1.2.1 Bio-nanocomposites 19
1.2.1.1 Natural Bioresources (Edible Packaging Materials) 19
Proteins 20
Carbohydrates 21
Lipids 22
1.2.1.2 Chemical Synthesis 24
Biomass 24
Petrochemicals 27
1.2.1.3 Microorganisms 31
Polyhydroxyalkanoates 31
Bacterial Cellulose 33
1.2.2 Nanofillers and Bio-nanocomposite Production 33
1.2.3 Commercial Bio-nanocomposites in Food Packaging Applications 34
1.3 Legal and Ethical Barriers 37
1.4 Future Trends and Concluding Remarks 39
References 40
2 Polymer-Based Bionanocomposites for Future Packaging Materials 49
Abstract 49
2.1 Introduction 49
2.1.1 The Main Aspect of Product Packaging 50
2.1.2 Safety Maintenance in Product Packaging 51
2.1.3 Commercialization of Product Through Packaging 51
2.2 Psychological Aspect of Product Packaging 52
2.3 Revolution in Packaging 54
2.4 Environmental Aspect of Product Packaging 55
2.5 Role of Starch in Packaging Application 55
2.6 Polymer Nanocomposites: An Alternative to Non-Biodegradable Plastics 56
2.7 Nanomaterials as Promising Filler in Polymer Based Bionanocomposites 56
2.7.1 Nanoclay 56
2.7.2 Nano Silicon Carbide 58
2.7.3 Nano Calcium Carbonate 58
2.8 Responsible Properties of Bionanocomposites for Packaging Applications 59
2.8.1 Fire Retardant Properties 59
2.8.2 Oxygen Barrier Properties 60
2.8.3 Thermal Properties 61
2.8.4 Mechanical Properties 62
2.9 Concluding Remarks 63
References 63
3 Cellulose Reinforced Biodegradable Polymer Composite Film for Packaging Applications 65
Abstract 65
3.1 Introduction 65
3.2 Chronological Events of Cellulose Fiber as Reinforcement in Composite Materials 66
3.3 Cellulose: A Biodegradable Polymer Reinforcement 68
3.3.1 Cellulose Nano-structured Materials 69
3.3.2 Cellulose Nanofibers 70
3.4 Cellulose Reinforced Biodegradable Polymer Composite Film 70
3.4.1 Types and Properties of Biodegradable Polymer 70
3.4.1.1 Polysaccharides 71
3.4.1.2 Proteins 72
3.4.1.3 Lipid 73
3.4.1.4 Polyhydroxyalkanoates (PHA) 73
3.4.1.5 Polylactic Acid (PLA) 74
3.4.2 Properties of Biodegradable Polymer-Cellulose Composite Film 74
3.5 Packaging Applications 79
3.6 Conclusion and Future Perspective 81
Acknowledgements 81
References 81
4 Nanohybrid Active Fillers in Food Contact Bio-based Materials 86
Abstract 86
4.1 Introduction 86
4.2 Inorganic Fillers with Potential Use in Food Contact 88
4.2.1 Clays 88
4.2.2 Hydrotalcites 92
4.2.3 Halloysites 94
4.2.4 Zeolites 96
4.2.5 Mica and Talc 97
4.3 Regulation Issues 99
4.3.1 European Union 99
4.3.2 United States (USA) 100
4.4 Conclusions and Future Perspectives 101
References 102
5 Oil Palm Biomass Cellulose-Fabricated Polylactic Acid Composites for Packaging Applications 110
Abstract 110
5.1 Introduction 111
5.2 Materials and Methods 112
5.2.1 Materials 112
5.2.2 Oil Palm Mesocarp Fiber Pretreatment 112
5.2.3 One-Pot Nanofibrillation and Nanocomposite Production in a Twin-screw Extruder 112
5.2.4 Analyses 113
5.2.4.1 Visual Examination 113
5.2.4.2 Morphological Analysis 113
5.2.4.3 Mechanical Properties 113
5.2.4.4 Crystallinity 113
5.2.4.5 Thermal Properties 114
5.2.4.6 Contact Angle 114
5.3 Results and Discussion 114
5.3.1 Nanofibrillation of Cellulose by Extrusion 114
5.3.2 Mechanical Properties 114
5.3.3 Visual Appearance of Composite Samples 115
5.3.4 Morphological Analysis 116
5.3.5 Crystallinity Properties 117
5.3.6 Thermal Properties 118
5.3.7 Contact Angle Analysis 119
5.4 Conclusions 119
Acknowledgements 120
References 120
6 Chitosan-Based Bionanocomposite for Packaging Applications 121
Abstract 121
6.1 Introduction 121
6.2 Characterization of Chitosan-Based Nanocomposites 123
6.2.1 Fourier Transform Infrared Spectroscopy (FTIR) of Chitosan-Based Nanocomposites 123
6.2.2 X-ray Diffraction (XRD) Analysis of Chitosan-Based Nanocomposites 124
6.2.3 Scanning Electron Microscopy (SEM) Analysis of Chitosan-Based Nanocomposites 125
6.2.4 Transmission Electron Microscopy (TEM) Analysis of Chitosan-Based Nanocomposites 126
6.2.5 X-ray Photoelectron Spectroscopy (XPS) Analysis of Chitosan-Based Nanocomposites 127
6.3 Properties of Chitosan-Based Nanocomposites 128
6.3.1 Thermal Properties of Chitosan-Based Nanocomposites 128
6.3.2 Mechanical Properties of Chitosan-Based Nanocomposite 129
6.3.3 Oxygen Barrier Properties 131
6.3.4 Antibacterial Properties 131
6.4 Chitosan-Based Nanocomposite for Packaging Applications 132
6.5 Concluding Remarks 135
Acknowledgements 135
References 135
7 Sugar Palm Starch-Based Composites for Packaging Applications 139
Abstract 139
7.1 Introduction 139
7.2 Types of Packaging Materials 140
7.2.1 Bio-Based Plastics 141
7.3 Starch 142
7.3.1 Starch Structure 143
7.3.1.1 Amylose 144
7.3.1.2 Amylopectin 145
7.4 Sugar Palm Starch 145
7.4.1 Extraction and Preparation of Sugar Palm Starch 146
7.5 Modification of Sugar Palm Starch Films 147
7.5.1 Plasticization of Sugar Palm Starch Films 148
7.5.2 Sugar Palm Starch Blend 151
7.5.3 Sugar Palm Starch Bilayer Films 153
7.5.4 Sugar Palm Fiber Reinforced Sugar Palm Starch Biocomposites 154
7.5.5 Sugar Palm Cellulose Reinforced Sugar Palm Starch Biocomposites 156
7.5.6 Microcrystalline Cellulose (MCC) Reinforced Sugar Palm Starch 156
7.5.7 Sugar Palm Nanocellulose Reinforced Sugar Palm Starch 157
7.6 Conclusion 158
References 158
8 Natural Biopolymer-Based Nanocomposite Films for Packaging Applications 162
Abstract 162
8.1 Introduction 163
8.2 Basic Principles of Reinforcement 164
8.3 Carbon Nanomaterial-Based Reinforcement 167
8.3.1 Graphene-Based Functionalization 167
8.3.1.1 Synthesis of Graphene Oxide and Derivatives 167
Exfoliation of Graphite 168
Oxidation of Graphite 168
8.3.1.2 Biopolymer-Graphene Nanocomposites for Packaging 170
Starch 170
Cellulose 173
Poly(Lactic Acid) 176
Poly(Hydroxyalkanoate) 177
8.3.2 Carbon Nanotube-Based Functionalization 177
8.4 Clay and Silicate Nanoclay-Based Reinforcement 178
8.5 Cellulose Nanofiber, Starch Nanocrystal, and Chitosan Nanoparticle-Based Reinforcements 179
8.6 Antimicrobial Nanomaterial 180
8.7 Future Perspective and Limitations 181
8.8 Conclusion 183
References 184
9 Green Synthesis of Copper-Reinforced Cellulose Nanocomposites for Packaging Applications 191
Abstract 191
9.1 Introduction 192
9.2 Materials and Methods 192
9.2.1 Materials 192
9.2.2 Cassia alata Leaf Extraction 192
9.2.3 Synthesis of Copper Nanoparticles 193
9.2.4 Dissolution of Cellulose 193
9.2.5 Preparation of Cellulose Wet Films with CuNPs 193
9.2.6 FTIR Spectroscopic Analysis 193
9.2.7 Morphology 194
9.2.8 Thermogravimetric Analysis 194
9.2.9 Antibacterial Testing 194
9.3 Result and Discussion 194
9.3.1 Appearance of Matrix and Cellulose/CuNPs Composite Film 194
9.3.2 Size of the CuNPs Formed by Using the Cassia alata Leaf Extract as Reducing Agent 195
9.3.3 Distribution of Ex situ Generated CuNPs Inside the Matrix 195
9.3.4 Interaction Between Matrix and CuNPs 196
9.3.5 Antibacterial Activity 197
9.3.6 X-Ray Diffraction Analysis 199
9.3.7 Thermal Properties 200
9.4 Conclusions 200
References 201
10 Polysaccharides-Based Bionanocomposites for Food Packaging Applications 202
Abstract 202
10.1 Introduction 202
10.2 Biodegradable Polymers 204
10.3 Polysaccharides in Food Packaging 205
10.3.1 Plant-Based Polysaccharides for Food Packaging 205
10.3.1.1 Starch 205
10.3.1.2 Cellulose 206
10.3.1.3 Galactomannans 207
10.3.2 Animal-Based Polysaccharides for Food Packaging 207
10.3.2.1 Chitosan 207
10.3.3 Algae-Based Polysaccharides for Food Packaging 208
10.3.3.1 Alginate 208
10.3.3.2 Carrageenan 210
10.3.4 Microorganism-Based Polysaccharides for Food Packaging 211
10.3.4.1 Xanthan Gum 211
10.3.4.2 Gellan Gum 211
10.3.4.3 FucoPol 212
10.3.4.4 Pullulan 212
10.4 Conclusion 215
References 215
11 LDPE/RH/MAPE/MMT Nanocomposite Films for Packaging Applications 220
Abstract 220
11.1 Introduction 221
11.2 Materials and Methods 222
11.2.1 Materials 222
11.2.2 Preparation of Nanocomposite Films 223
11.3 Characterizations 224
11.3.1 X-Ray Diffraction 224
11.3.2 Mechanical Measurements 224
11.3.3 Oxygen Barrier Analysis 224
11.3.4 Morphological Analysis 225
11.4 Results and Discussion 225
11.4.1 X-Ray Diffraction 225
11.4.2 Mechanical Properties 227
11.4.3 Barrier Properties 229
11.4.4 Morphological Analysis 230
11.5 Conclusions 233
Acknowledgements 234
References 234
12 Rubber-Based Nanocomposites and Significance of Ionic Liquids in Packaging Applications 237
Abstract 237
12.1 Introduction 238
12.2 Natural Rubber Nanocomposites 239
12.3 Fillers in Rubber Nanocomposites 240
12.4 Carbon Black/Silica as Fillers 241
12.5 Carbon Nanotubes/Graphene Fillers in Rubber Nanocomposites 243
12.6 Ionic Liquids in Rubber Nanocomposites 244
12.7 Packaging Applications of Rubber Nanocomposites 247
12.8 Conclusion 248
References 249
13 Proteins as Agricultural Polymers for Packaging Production 253
Abstract 253
13.1 Introduction 254
13.2 Proteins for Packaging Materials 255
13.2.1 Corn Zein 255
13.2.2 Wheat Gluten 255
13.2.3 Soy Proteins 256
13.2.4 Peanuts and Cotton Seed Proteins 257
13.2.5 Milk Proteins 257
13.2.6 Collagen and Gelatin 257
13.2.7 Keratin 258
13.2.8 Egg Albumin Protein 258
13.2.9 Myofibrillar Proteins 258
13.3 Methods for the Formation of Packaging Materials from Proteins 259
13.3.1 Wet Processing 259
13.3.2 Dry Process 260
13.3.2.1 Thermo-Pressing/Thermoforming 261
13.3.2.2 Extrusion 262
13.4 Shaping Agents 262
13.4.1 Plasticizers 262
13.4.2 Cross-Linking Agents 263
13.5 Properties 263
13.6 Application of Proteins-Based Films and Edible Coatings 267
13.7 Future Prospects 269
References 269
14 Layer Double Hydroxide Reinforced Polymer Bionanocomposites for Packaging Applications 278
Abstract 278
14.1 Introduction 278
14.1.1 Bionanocomposites 279
14.1.2 Layered Double Hydroxide 280
14.1.3 Polymer/LDH Bionanocomposites 280
14.1.4 Importance of Layered Filler Polymer Nanocomposite 282
14.2 Synthesis of Polymer-LDH Bionanocomposite 283
14.2.1 Template Synthesis 284
14.2.2 Exfoliation-Adsorption 284
14.2.3 Melt Intercalation 285
14.2.4 In Situ Polymerization 286
14.2.5 Reconstruction Method 286
14.3 Characterisation of Polymer-LDH Bionanocomposite 287
14.3.1 Fourier Transform Infrared (FTIR) Spectroscopy 287
14.3.2 X-Ray Diffraction 288
14.3.3 Scanning Electron Microscopy (SEM) Study 289
14.3.4 Transmission Electron Microscopy (TEM) Study 290
14.4 Properties of LDH Based Bionanocomposites 292
14.4.1 Thermogravimetric Analysis (TGA) 292
14.4.2 Gas and Moisture Obstruction Properties 294
14.4.3 Biodegradable Properties 296
14.4.4 Mechanical Properties 297
14.5 Conclusion and Future Prospective 297
Acknowledgements 298
References 298
| Erscheint lt. Verlag | 21.11.2017 |
|---|---|
| Zusatzinfo | XVIII, 290 p. 102 illus., 68 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Technik ► Maschinenbau |
| Schlagworte | biomaterials • Gas barrier properties • Manufacturing and design of bionanocomposites • Packaging applications • Sustainable material engineering |
| ISBN-10 | 3-319-67319-X / 331967319X |
| ISBN-13 | 978-3-319-67319-6 / 9783319673196 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich