Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Integration of Renewable Sources of Energy (eBook)

eBook Download: PDF
2017 | 2. Auflage
John Wiley & Sons (Verlag)
9781119137375 (ISBN)

Lese- und Medienproben

Integration of Renewable Sources of Energy - Felix A. Farret, M. Godoy Simoes
Systemvoraussetzungen
117,99 inkl. MwSt
(CHF 115,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The latest tools and techniques for addressing the challenges of 21st century power generation, renewable sources and distribution systems

Renewable energy technologies and systems are advancing by leaps and bounds, and it's only a matter of time before renewables replace fossil fuel and nuclear energy sources. Written for practicing engineers, researchers and students alike, this book discusses state-of-the art mathematical and engineering tools for the modeling, simulation and control of renewable and mixed energy systems and related power electronics. Computational methods for multi-domain modeling of integrated energy systems and the solution of power electronics engineering problems are described in detail. 

Chapters follow a consistent format, featuring a brief introduction to the theoretical background, a description of problems to be solved, as well as objectives to be achieved. Multiple block diagrams, electrical circuits, and mathematical analysis and/or computer code are provided throughout. And each chapter concludes with discussions of lessons learned, recommendations for further studies, and suggestions for experimental work.

Key topics covered in detail include:

  • Integration of the most usual sources of electrical power and related thermal systems
  • Equations for energy systems and power electronics focusing on state-space and power circuit oriented simulations
  • MATLAB® and Simulink® models and functions and their interactions with real-world implementations using microprocessors and microcontrollers
  • Numerical integration techniques, transfer-function modeling, harmonic analysis, and power quality performance assessment
  • MATLAB®/Simulink®, Power Systems Toolbox, and PSIM for the simulation of power electronic circuits, including for renewable energy sources such as wind and solar sources 

Written by distinguished experts in the field, Integration of Renewable Sources of Energy, 2nd Edition is a valuable working resource for practicing engineers interested in power electronics, power systems, power quality, and alternative or renewable energy. It is also a valuable text/reference for undergraduate and graduate electrical engineering students. 

 



Felix A. Farret, PhD, is a Professor in the Department of Processing Energy, at the Federal University of Santa Maria, Brazil. He is the Coordinator of the Center of Excellence in Energy and Power Systems (CEESP) at Federal University of Santa Maria. He has been involved with R&D for industrial electronics and alternative energy sources for more than four decades.

M. Godoy Simões, PhD, IEEE Fellow, is a Professor in the Electrical Engineering Department at Colorado School of Mines. Dr. Sim??es pioneered the application of neural networks and fuzzy logic in power electronics, motor drives and renewable energy systems.


The latest tools and techniques for addressing the challenges of 21st century power generation, renewable sources and distribution systems Renewable energy technologies and systems are advancing by leaps and bounds, and it s only a matter of time before renewables replace fossil fuel and nuclear energy sources. Written for practicing engineers, researchers and students alike, this book discusses state-of-the art mathematical and engineering tools for the modeling, simulation and control of renewable and mixed energy systems and related power electronics. Computational methods for multi-domain modeling of integrated energy systems and the solution of power electronics engineering problems are described in detail. Chapters follow a consistent format, featuring a brief introduction to the theoretical background, a description of problems to be solved, as well as objectives to be achieved. Multiple block diagrams, electrical circuits, and mathematical analysis and/or computer code are provided throughout. And each chapter concludes with discussions of lessons learned, recommendations for further studies, and suggestions for experimental work. Key topics covered in detail include: Integration of the most usual sources of electrical power and related thermal systems Equations for energy systems and power electronics focusing on state-space and power circuit oriented simulations MATLAB and Simulink models and functions and their interactions with real-world implementations using microprocessors and microcontrollers Numerical integration techniques, transfer-function modeling, harmonic analysis, and power quality performance assessment MATLAB /Simulink , Power Systems Toolbox, and PSIM for the simulation of power electronic circuits, including for renewable energy sources such as wind and solar sources Written by distinguished experts in the field, Integration of Renewable Sources of Energy, 2nd Edition is a valuable working resource for practicing engineers interested in power electronics, power systems, power quality, and alternative or renewable energy. It is also a valuable text/reference for undergraduate and graduate electrical engineering students.

Felix A. Farret, PhD, is a Professor in the Department of Processing Energy, at the Federal University of Santa Maria, Brazil. He is the Coordinator of the Center of Excellence in Energy and Power Systems (CEESP) at Federal University of Santa Maria. He has been involved with R&D for industrial electronics and alternative energy sources for more than four decades. M. Godoy Simões, PhD, IEEE Fellow, is a Professor in the Electrical Engineering Department at Colorado School of Mines. Dr. Sim??es pioneered the application of neural networks and fuzzy logic in power electronics, motor drives and renewable energy systems.

Title Page 5
Copyright Page 6
Contents 9
Foreword for the First Edition 21
Foreword for the Second Edition 23
Preface for the First Edition 25
Prefacefor the Second Edition 29
Acknowledgements 33
Chapter 1 Alternative Sources of Energy 35
1.1 Introduction 35
1.2 Renewable Sources of Energy 36
1.3 Renewable Energy versus Alternative Energy 38
1.4 Planning and Development of Integrated Energy 44
1.4.1 Grid-Supplied Electricity 44
1.4.2 Load 45
1.4.3 Distributed Generation 46
1.5 Renewable Energy Economics 47
1.5.1 Calculation of Electricity Generation Costs 48
1.5.1.1 Existing Plants 48
1.5.1.2 New Plants 49
1.5.1.3 Investment Costs 49
1.5.1.4 Capital Recovery Factor 50
1.6 European Targets for Renewable Powers 50
1.6.1 Demand-Side Management Options 51
1.6.2 Supply-Side Management Options 53
1.7 Integrating Renewable Energy Sources 55
1.7.1 Integration of Renewable Energy in the United States 57
1.7.2 Energy Recovery Time 58
1.7.3 Sustainability 60
1.8 Modern Electronic Controls for Power Systems 63
1.9 Issues Related to Alternative Sources of Energy 65
References 69
Chapter 2 Principles of Thermodynamics 71
2.1 Introduction 71
2.2 State of a Thermodynamic System 72
2.2.1 Heating Value 80
2.2.2 First and Second Laws of Thermodynamics and Thermal Efficiency 82
2.3 Fundamental Laws and Principles 83
2.3.1 Example of Efficiency in a Power Plant 85
2.3.2 Practical Problems Associated with Carnot Cycle Plant 88
2.3.3 Rankine Cycle for Power Plants 89
2.3.4 Brayton Cycle for Power Plants 92
2.3.5 Geothermal Energy 94
2.3.6 Kalina Cycle 95
2.3.7 Energy, Power, and System Balance 96
2.4 Examples of Energy Balance 100
2.4.1 Simple Residential Energy Balance 100
2.4.2 Refrigerator Energy Balance 101
2.4.3 Energy Balance for a Water Heater 102
2.4.4 Rock Bed Energy Balance 104
2.4.5 Array of Solar Collectors 104
2.4.6 Heat Pump 105
2.4.7 Heat Transfer Analysis 106
2.4.8 Simple Steam Power Turbine Analysis 107
2.5 Planet Earth: A Closed But Not Isolated System 111
References 113
Chapter 3 Hydroelectric Power Plants 115
3.1 Introduction 115
3.2 Determination of the Available Power 116
3.3 Expedient Topographical and Hydrological Measurements 118
3.3.1 Simple Measurement of Elevation 118
3.3.2 Global Positioning Systems for Elevation Measurement 119
3.3.3 Pipe Losses 120
3.3.4 Expedient Measurements of Stream Water Flow 121
3.3.4.1 Measurement Using a Float 121
3.3.4.2 Measurement Using a Rectangular Spillway 122
3.3.4.3 Measurement Using a Triangular Spillway 123
3.3.4.4 Measurement Based on the Dilution of Salt in the Water 123
3.3.5 Civil Works 126
3.4 Hydropower Generator Set 127
3.4.1 Regulation Systems 127
3.4.2 Butterfly Valves 127
3.5 Waterwheels 127
3.6 Turbines 130
3.6.1 Pelton Turbine 131
3.6.2 Francis Turbine 133
3.6.3 Michell–Banki Turbine 136
3.6.4 Kaplan or Hydraulic Propeller Turbine 137
3.6.5 Deriaz Turbines 139
3.6.6 Water Pumps Working as Turbines 140
3.6.7 Specification of Hydro Turbines 141
References 143
Chapter 4 Wind Power Plants 145
4.1 Introduction 145
4.2 Appropriate Location 146
4.2.1 Evaluation of Wind Intensity 146
4.2.1.1 Meteorological Mapping 150
4.2.1.2 Weibull Probability Distribution 152
4.2.1.3 Analysis of Wind Speed by Visualization 155
4.2.1.4 Technique of the Balloon 157
4.2.2 Topography 158
4.2.3 Purpose of the Energy Generated 158
4.2.4 Accessibility 158
4.3 Wind Power 159
4.3.1 Wind Power Corrections 160
4.3.2 Wind Distribution 162
4.4 General Classification of Wind Turbines 163
4.4.1 Rotor Turbines 165
4.4.2 Multiple-Blade Turbines 165
4.4.3 Drag Turbines (Savonius) 166
4.4.4 Lifting Turbines 167
4.4.4.1 Starting System 168
4.4.4.2 Rotor 168
4.4.4.3 Lifting 168
4.4.4.4 Speed Multipliers 168
4.4.4.5 Braking System 169
4.4.4.6 Generation System 169
4.4.4.7 Horizontal- and Vertical-Axis Turbines 169
4.4.5 Magnus Turbines 170
4.4.6 System TARP–WARP 170
4.4.7 Accessories 173
4.5 Generators and Speed Control Used in Wind Power Energy 174
4.6 Analysis of Small Generating Systems 177
4.6.1 Maximization of Cp 179
References 182
Chapter 5 Thermosolar Power Plants 185
5.1 Introduction 185
5.2 Water Heating by Solar Energy 186
5.3 Heat Transfer Calculation of Thermally Isolated Reservoirs 189
5.3.1 Steady-State Thermal Calculations 189
5.3.2 Transient-State Thermal Calculations 190
5.3.3 Practical Approximate Measurements of the Thermal Constants R and C in Water Reservoirs 192
5.4 Heating Domestic Water 193
5.5 Thermosolar Energy 194
5.5.1 Parabolic Trough 195
5.5.2 Parabolic Dish 197
5.5.3 Solar Power Tower 198
5.5.4 Production of Hydrogen 200
5.6 Economics Analysis of Thermosolar Energy 202
References 204
Chapter 6 Photovoltaic Power Plants 207
6.1 Introduction 207
6.2 Solar Energy 208
6.3 Conversion of Electricity by Photovoltaic Effect 210
6.3.1 Photovoltaic Cells 211
6.4 Equivalent Models for Photovoltaic Panels 212
6.4.1 Dark-Current Electric Parameters of a Photovoltaic Panel 213
6.4.1.1 Measurement of I? 214
6.4.1.2 Measurement of Rp 214
6.4.1.3 Measurement of Id 215
6.4.1.4 Measurement of ? 216
6.4.1.5 Measurement of Is 217
6.4.1.6 Measurement of Rs 217
6.4.2 Power, Utilization, and Efficiency of a PV Cell 217
6.5 Solar Cell Output Characteristics 222
6.5.1 Dependence of a PV Cell Characteristic on Temperature and PV Cells 224
6.5.2 Model of a PV Panel Consisting of n Cells in Series 227
6.5.3 Model of a PV Panel Consisting of n Cells in Parallel 229
6.6 Photovoltaic Systems 230
6.6.1 Irradiance Area 231
6.6.2 Solar Modules and Panels 232
6.6.3 Aluminum Structures 232
6.6.4 Load Controller 234
6.6.5 Battery Bank 234
6.6.6 Array Orientation 234
6.7 Applications of Photovoltaic Solar Energy 235
6.7.1 Residential and Public Illumination 235
6.7.2 Stroboscopic Signaling 236
6.7.3 Electric Fence 237
6.7.4 Telecommunications 237
6.7.5 Water Supply and Micro-irrigation Systems 237
6.7.6 Control of Plagues and Conservation of Food and Medicine 239
6.7.7 Hydrogen and Oxygen Generation by Electrolysis 240
6.7.8 Electric Power Supply 242
6.7.9 Security Video Cameras and Alarm Systems 243
6.8 Economics and Analysis of Solar Energy 243
References 248
Chapter 7 Power Plants with Fuel Cells 251
7.1 Introduction 251
7.2 The Fuel Cell 252
7.3 Commercial Technologies for the Generation of Electricity 254
7.4 Practical Issues Related to Fuel Cell Stacking 265
7.4.1 Low- and High-Temperature Fuel Cells 265
7.4.2 Commercial and Manufacturing Issues 266
7.5 Constructional Features of Proton Exchange Membrane Fuel Cells 267
7.6 Constructional Features of Solid Oxide Fuel Cells 270
7.7 Reformers, Electrolyzer Systems, and Related Precautions 271
7.8 Advantages and Disadvantages of Fuel Cells 272
7.9 Fuel Cell Equivalent Circuit 273
7.10 Water, Air, and Heat Management 280
7.10.1 Fuel Cells and Their Thermal Energy Evaluation 281
7.11 Experimental Evaluation of the Fuel Cell Equivalent Model Parameters 284
7.11.1 Determination of FC Parameters 287
7.12 Aspects of Hydrogen as Fuel 290
7.13 Load Curve Peak Shaving with Fuel Cells 292
7.13.1 Maximal Load Curve Flatness at Constant Output Power 292
7.14 Future Trends 294
References 297
Chapter 8 Biomass-Powered Microplants 301
8.1 Introduction 301
8.2 Fuel from Biomass 306
8.3 Biogas 308
8.4 Biomass for Biogas 309
8.5 Biological Formation of Biogas 311
8.6 Factors Affecting Biodigestion 311
8.7 Characteristics of Biodigesters 313
8.8 Construction of a Biodigester 315
8.8.1 Typical Size for a Biodigester 316
8.9 Generation of Electricity Using Biogas 316
References 320
Chapter 9 Microturbines 323
9.1 Introduction 323
9.2 Principles of Operation 325
9.3 Microturbine Fuel 327
9.4 Control of Microturbine 328
9.4.1 Mechanical-Side Structure 329
9.4.2 Electrical-Side Structure 331
9.4.3 Control-Side Structure 332
9.5 Efficiency and Power of Microturbines 337
9.6 Site Assessment for Installation of Microturbines 339
References 341
Chapter 10 Earth Core and Solar Heated Geothermal Energy Plants 345
10.1 Introduction 345
10.2 Earth Core Geothermal as a Source of Energy 347
10.2.1 Earth Core Geothermal Economics 348
10.2.2 Examples of Earth Core Geothermal Electricity 350
10.3 Solar Heat Stored Underground as a Source of Energy 351
10.3.1 Heat Exchange with Nature 353
10.3.2 Heat Exchange with Surface Water 356
10.3.3 Heat Exchange with Circulating Fluid 356
10.4 Solar Geothermal Heat Exchangers 357
10.4.1 Horizontal Serpentines 358
10.4.2 Vertical Serpentines 360
10.4.3 Mixed Serpentines 360
10.4.4 Pressurized Serpentines Heat Pump 360
10.5 Heat Exchange with a Room 362
References 363
Chapter 11 Thermocouple, Sea Waves, Tide, MHD, and Piezoelectric Power Plants 365
11.1 Introduction 365
11.2 Thermocouple Electric Power Generation 365
11.2.1 Thermocouples 366
11.2.2 Power Conversion Using Thermocouples 368
11.2.3 Principle of Semiconductor Thermocouples 370
11.2.4 A Stack of Semiconductor Thermocouples 372
11.2.5 A Plate of Semiconductor Thermocouples 372
11.2.6 Advantages and Disadvantages of the Semiconductor Thermocouples 373
11.3 Power Plants with Ocean Waves 373
11.3.1 Sea Wave Energy Extraction Technology 375
11.3.2 Energy Content in Sea Waves 378
11.4 Tide-Based Small Power Plants 379
11.5 Small Central Magnetohydrodynamic 381
11.6 Small Piezoelectric Power Plant 383
11.6.1 Piezoelectric Energy Conversion 384
11.6.2 Piezoelectric-Based Energy Applications 386
References 386
Chapter 12 Induction Generators 391
12.1 Introduction 391
12.2 Principles of Operation 392
12.3 Representation of Steady?State Operation 394
12.4 Power and Losses Generated 396
12.5 Self-Excited Induction Generator 398
12.6 Magnetizing Curves and Self-Excitation 402
12.7 Mathematical Description of the Self-Excitation Process 403
12.8 Grid-Connected and Stand-Alone Operations 406
12.9 Speed and Voltage Control 408
12.9.1 Frequency, Speed, and Voltage Controls 410
12.9.2 The Danish Concept: Two Generators on the Same Shaft 417
12.9.3 Variable-Speed Grid Connection 418
12.9.4 Control by the Load versus Control by the Source 419
12.10 Economics Considerations 421
References 423
Chapter 13 Permanent Magnet Generators 427
13.1 Introduction 427
13.1.1 PMSG Radial Flux Machines 428
13.1.2 Axial Flux Machines 428
13.1.3 Operating Principle of the PMSG 429
13.2 Permanent Magnets Used for PMSGs 431
13.3 Modeling a Permanent Magnet Synchronous Machine 432
13.3.1 Simplified Model of a PMSG 436
13.4 Core Types of a PMSG 441
13.5 PSIM Simulation of the PMSG 442
13.6 Advantages and Disadvantages of the PMSG 442
References 445
Chapter 14 Storage Systems 447
14.1 Introduction 447
14.2 Energy Storage Parameters 450
14.3 Lead–Acid Batteries 453
14.3.1 Constructional Features 455
14.3.2 Battery Charge–Discharge Cycles 456
14.3.3 Operating Limits and Parameters 458
14.3.4 Maintenance of Lead–Acid Batteries 460
14.3.5 Sizing Lead–Acid Batteries for DG Applications 461
14.4 Ultracapacitors (Supercapacitors) 463
14.4.1 Double-Layer Effect 464
14.4.2 High-Energy Ultracapacitors 466
14.4.3 Applications of Ultracapacitors 467
14.5 Flywheels 469
14.5.1 Advanced Performance of Flywheels 470
14.5.2 Applications of Flywheels 471
14.5.3 Design Strategies 473
14.6 Superconducting Magnetic Storage System 475
14.6.1 SMES System Capabilities 477
14.6.2 Developments in SMES Systems 478
14.7 Pumped Hydroelectric Storage 480
14.7.1 Storage Capabilities of Pumped Systems 481
14.8 Compressed Air Energy Storage 483
14.9 Heat Storage 485
14.10 Hydrogen Storage 486
14.11 Energy Storage as an Economic Resource 487
References 491
Chapter 15 Integration of Alternative Sources of Energy 495
15.1 Introduction 495
15.2 Principles of Power Interconnection 496
15.2.1 Converting Technologies 496
15.2.2 Power Converters for Power Injection into the Grid 498
15.2.3 Power Flow 500
15.3 Instantaneous Active and Reactive Power Control Approach 504
15.4 Integration of Multiple Renewable Energy Sources 507
15.4.1 DC-Link Integration 509
15.4.2 AC-Link Integration 511
15.4.3 HFAC-Link Integration 512
15.5 Islanding and Interconnection Control 515
15.6 DG PLL with Clarke and Park Transformations 524
15.6.1 Clarke Transformation for AC-Link Integration 524
15.6.2 Blondel or Park Transformation for AC-Link Integration 526
15.7 DG Control and Power Injection 528
References 534
Chapter 16 Distributed Generation 537
16.1 Introduction 537
16.2 The Purpose of Distributed Generation 540
16.2.1 Modularity 541
16.2.2 Efficiency 541
16.2.3 Low or No Emissions 541
16.2.4 Security 541
16.2.5 Load Management 542
16.3 Sizing and Siting of Distributed Generation 544
16.4 Demand-Side Management 545
16.5 Optimal Location of Distributed Energy Sources 546
16.5.1 DG Influence on Power and Energy Losses 548
16.5.2 Estimation of DG Influence on Power Losses of Sub-transmission Systems 552
16.5.3 Equivalent of Sub-transmission Systems Using Experimental Design 555
16.6 Algorithm of Multicriterial Analysis 557
16.6.1 Voltage Quality in DG Systems 559
References 564
Chapter 17 Interconnection of Alternative Energy Sources with the Grid 567
17.1 Introduction 567
17.2 Interconnection Technologies 570
17.2.1 Synchronous Interconnection 570
17.2.2 Induction Interconnection 571
17.2.3 Inverter Interconnection 572
17.3 Standards and Codes for Interconnection 573
17.3.1 IEEE 1547 573
17.3.2 National Electrical Code 574
17.3.2.1 NFPA 70: National Electrical Code 574
17.3.2.2 NFPA 853: Standard for the Installation of Stationary Fuel Cell Power Plants 575
17.3.3 UL Standards 575
17.3.3.1 UL 1741: Inverters, Converters, and Controllers for Use in Independent Power Systems 575
17.3.3.2 UL 1008: Transfer Switch Equipment 575
17.3.3.3 UL 2200: Standard for Safety for Stationary Engine Generator Assemblies 577
17.4 Interconnection Considerations 577
17.4.1 Voltage Regulation 577
17.4.2 Integration with Area EPS Grounding 578
17.4.3 Synchronization 578
17.4.4 Isolation 579
17.4.5 Response to Voltage Disturbance 579
17.4.6 Response to Frequency Disturbance 580
17.4.7 Disconnection for Faults 582
17.4.8 Loss of Synchronism 583
17.4.9 Feeder Reclosing Coordination 583
17.4.10 Dc Injection 584
17.4.11 Voltage Flicker 584
17.4.12 Harmonics 585
17.4.13 Unintentional Islanding Protection 587
17.5 Interconnection Examples for Alternative Energy Sources 587
17.5.1 Synchronous Generator for Peak Demand Reduction 589
17.5.2 Small Grid-Connected PV System 589
References 591
Chapter 18 Micropower System Modeling with HOMER 593
18.1 Introduction 593
18.2 Simulation 595
18.3 Optimization 600
18.4 Sensitivity Analysis 603
18.4.1 Dealing with Uncertainty 604
18.4.2 Sensitivity Analyses on Hourly Data Sets 607
18.5 Physical Modeling 608
18.5.1 Loads 608
18.5.1.1 Primary Load 609
18.5.1.2 Deferrable Load 609
18.5.1.3 Thermal Load 610
18.5.2 Resources 611
18.5.2.1 Solar Resource 611
18.5.2.2 Wind Resource 611
18.5.2.3 Hydro Resource 612
18.5.2.4 Biomass Resource 612
18.5.3 Components 613
18.5.3.1 PV Array 614
18.5.3.2 Wind Turbine 615
18.5.3.3 Hydro Turbine 616
18.5.3.4 Generators 617
18.5.3.5 Battery Bank 619
18.5.3.6 Grid 623
18.5.3.7 Boiler 625
18.5.3.8 Converter 625
18.5.3.9 Electrolyzer 626
18.5.3.10 Hydrogen Tank 626
18.5.4 System Dispatch 626
18.5.4.1 Operating Reserve 627
18.5.4.2 Control of Dispatchable System Components 628
18.5.4.3 Dispatch Strategy 631
18.5.4.4 Load Priority 632
18.6 Economic Modeling 632
References 635
Appendix A Diesel Power Plants 637
A.1 Introduction 637
A.2 TheDiesel Engine 638
A.3 MainComponents of a Diesel Engine 638
A.3.1 Fixed Parts 639
A.3.2 Moving Parts 639
A.3.3 Auxiliary Systems 639
A.4 Terminologyof Diesel Engines 640
A.4.1 The Diesel Cycle 640
A.4.2 Combustion Process 642
A.4.2.1 Four-Stroke Diesel Engine 643
A.5 Cycleof the Diesel Engine 643
A.5.1 Relative Diesel Engine Cycle Losses 644
A.5.2 Classification of the Diesel Engine 644
A.6 Typesof Fuel Injection Pumps 645
A.7 ElectricalConditions of Generators Driven by Diesel Engines 646
References 648
Appendix B The Stirling Engine 649
B.1 Introduction 649
B.2 TheStirling Cycle 650
B.3 Displacer-Type Stirling Engine 653
B.4 Two-Piston Stirling Engine 655
References 657
Index 659
EULA 683

Erscheint lt. Verlag 6.6.2017
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Alternative Energy • alternative energy integration • Alternative energy sources • computational methods for multi-domain modeling of energy systems • connecting alternative energy sources to power grids • connecting renewable energy to power grids • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Energie • Energietechnik • Energy • energy conversion modeling • Energy conversion technology • engineering tools for modeling energy systems • engineering tools for the modeling, simulation and control of renewable energy systems • Erneuerbare Energien • Leistungselektronik • <p>energy conversion techniques • mathematical modeling of renewable energy systems • mathematical tools for modeling energy systems • mathematical tools for modeling renewable energy systems • Power Electronics • power electronics engineering problems • power electronics equations • renewable energy • Renewable energy systems • simulation and control of mixed energy systems • Smart Grid • Smart Grids • Smart Power Grids • solar power system design • wind and solar power system design</p> • wind power system design
ISBN-13 9781119137375 / 9781119137375
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kommunikationssysteme mit EIB/KNX, LON, BACnet und Funk

von Thomas Hansemann; Christof Hübner; Kay Böhnke

eBook Download (2025)
Hanser (Verlag)
CHF 38,95
Verfahren zur Berechnung elektrischer Energieversorgungsnetze

von Karl Friedrich Schäfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 107,45