Advanced Manufacturing Technologies (eBook)
VIII, 294 Seiten
Springer International Publishing (Verlag)
978-3-319-56099-1 (ISBN)
This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.
Dr. Kapil Gupta is a Senior Lecturer at the Dept. of Mechanical and Industrial Engineering Technology at the University of Johannesburg, South Africa. His research interests are on advanced/modern machining, sustainable manufacturing and gear engineering.
Dr. Kapil Gupta is a Senior Lecturer at the Dept. of Mechanical and Industrial Engineering Technology at the University of Johannesburg, South Africa. His research interests are on advanced/modern machining, sustainable manufacturing and gear engineering.
Preface 6
Contents 8
Modern Machining 10
1 Fabrication of Micro-cutting Tools for Mechanical Micro-machining 11
Abstract 11
1.1 Introduction 11
1.2 Processes Used for Fabrication of Micro-cutting Tools 14
1.2.1 Grinding 14
1.2.2 Electro-Discharge Machining (EDM) and Its Variants 16
1.2.2.1 Micro-Electro-Discharge Grinding (µ-EDG) 16
1.2.2.2 Wire Electro-Discharge Grinding (WEDG) 18
1.2.3 Laser Beam Machining 19
1.2.4 Focused Ion Beam Machining (FIB) 20
1.3 Fabrication of End Mill Tool by Compound Machining of EDM Milling and Die-Sinking EDM 22
1.4 Summary 27
Acknowledgements 27
References 27
2 Machining of Glass Materials: An Overview 30
Abstract 30
2.1 Glass and Its Machining 30
2.1.1 Introduction 30
2.1.2 Challenges in Machining of Glass 32
2.2 Cutting Mechanisms 33
2.2.1 Ductile Mode Machining 33
2.2.2 Material Removal Mechanism in Glass 36
2.3 Machining of Glass 37
2.3.1 Conventional Machining 37
2.3.1.1 Turning 37
2.3.1.2 Grinding 39
2.3.1.3 Micro-Milling 41
2.3.2 Nonconventional Machining 43
2.3.2.1 Ultrasonic Machining (USM) 43
2.3.2.2 Abrasive Jet Machining (AJM) 45
2.3.2.3 Electrochemical Discharge Machining (ECDM) 46
2.3.2.4 Electrolytic in Process Dressing (ELID) 47
2.3.2.5 Laser Machining 49
2.4 Summary 51
References 51
3 Thermal-Assisted Machining of Titanium Alloys 55
Abstract 55
3.1 Introduction 56
3.2 Thermal-Assisted Machining Techniques 58
3.2.1 Laser-Assisted Machining 58
3.2.2 Plasma-Assisted Machining 71
3.2.3 Induction-Assisted Machining 73
3.3 Summary 76
References 77
4 Abrasive Water Jet Machining of Composite Materials 83
Abstract 83
4.1 Introduction 84
4.2 Composite Materials 85
4.3 Problems in Machining of Composites 86
4.4 Abrasive Water Jet Machining 89
4.4.1 Abrasive Water Jet Machine 90
4.4.2 Cutting Mechanism and Parameters 91
4.4.3 Important Process Parameters 93
4.4.4 Advantages, Limitations and Applications 95
4.4.4.1 Advantages of Abrasive Water Jet Machining Process 95
4.4.4.2 Limitations of Abrasive Water Jet Machining Process 95
4.4.4.3 Applications of Abrasive Water Jet Machining 96
4.5 Machinability Study of Natural Filler/Fibre-Reinforced Polymer Composite Using Abrasive Water Jet Machining Process 97
4.5.1 Background 97
4.5.2 Experimental Procedure 97
4.5.3 Results and Discussions 98
4.6 Summary 101
References 102
Advanced Repair and Joining 104
5 Advanced Joining and Welding Techniques: An Overview 105
Abstract 105
5.1 Introduction 105
5.2 Advanced Fastening and Bonding Processes 106
5.2.1 Hybrid Bonded Fastened Joints 106
5.2.2 Adhesive Injection Fastening 108
5.2.3 Clinching 109
5.3 Advanced Arc Welding Processes 111
5.3.1 Activated Flux Arc Welding Processes 112
5.3.1.1 Activated Flux Tungsten Inert Arc Welding 112
5.3.1.2 Other Activated Arc Welding Processes 114
5.3.2 Cold Metal Transfer Arc Welding 114
5.3.3 Pulse Arc Welding 115
5.3.4 Double Electrode Arc Welding 116
5.3.4.1 Gas Tungsten Arc Welding 117
5.3.4.2 Pulse Gas Metal Arc Welding 117
5.3.4.3 Plasma-GMAW and Plasma-GTAW 118
5.3.4.4 Submerged Arc Welding-GMAW 118
5.3.5 Hot Wire Arc Welding 118
5.4 Advanced Beam Welding Processes 119
5.4.1 Laser Beam Welding 120
5.4.1.1 Ultra Narrow Gap Laser Welding 120
5.4.1.2 Laser Beam Welding for Plastics 120
5.4.1.3 Laser Beam Welding for Dissimilar Materials 121
5.4.1.4 Laser Welding for Repair Applications 121
5.4.1.5 Repair Using Laser Powder Welding 122
5.4.2 Electron Beam Welding 122
5.4.2.1 Electron Beam Welding for Repair Applications 123
5.4.2.2 Surface Modification Through Electron Beam Welding 123
5.4.2.3 Non-vacuum Electron Beam Welding 124
5.5 Sustainable Welding Processes 124
5.5.1 Friction Stir Welding 125
5.5.1.1 Friction Stir Spot Welding 125
5.5.1.2 Friction Bit Joining 126
5.5.1.3 Friction Stir Extrusion 126
5.5.1.4 Friction Crush Welding 127
5.5.2 Magnetic Pulse Welding 128
5.5.3 Ultrasonic Welding 129
5.5.3.1 Ultrasonic Seam Welding 129
5.5.3.2 Ultrasonic Torsion Welding 130
5.6 Micro-Nano Joining 131
5.6.1 Fusion Micro-Welding 132
5.6.2 Solid State Micro Bonding and Welding 133
5.6.3 Nano-Joining 133
5.7 Hybrid Welding Processes 134
5.7.1 Laser Assisted Hybrid Welding 134
5.7.2 Hybrid Arc Welding 135
5.7.3 Hybrid Friction Stir Welding 136
5.7.3.1 Electrically Assisted FSW 136
5.7.3.2 Laser Assisted FSW 136
5.7.3.3 Arc Assisted FSW 136
5.7.3.4 Ultrasonic Energy Assisted FSW 137
5.7.3.5 Cooling Enhanced FSW 137
5.8 Summary 137
References 138
6 Laser-Based Repair of Damaged Dies, Molds, and Gears 141
Abstract 141
6.1 Introduction 141
6.2 Types of Damages and Their Causes 144
6.2.1 Catastrophic Damages 144
6.2.2 Manufacturing Damages 145
6.2.3 Operational Damages 146
6.3 Repair Process Sequence 147
6.4 Repair Processes 148
6.4.1 Arc-Based Repair Processes 149
6.4.2 Plasma-Based Repair Processes 150
6.4.3 Laser-Based Repair Process 150
6.4.3.1 Laser-Based Repair of Dies and Molds 151
6.4.3.2 Laser-Based Repair of Gears 152
6.4.4 Electron Beam-Based Repair Process 152
6.4.5 Comparative Study 153
6.5 Details of Laser-Based Repair Process 153
6.5.1 Types of Lasers Used in Repair Process 153
6.5.2 Process Principle and Case Studies 154
6.5.2.1 Carbon Dioxide Laser 154
Case Study 155
6.5.2.2 Nd:YAG Laser 156
Case Study 157
6.5.2.3 Yb:YAG Laser 158
Case Study 159
6.5.3 Form of Deposition Material 160
6.6 Summary 161
References 162
7 Friction Stir Welding—An Overview 164
Abstract 164
7.1 Introduction 164
7.2 Equipment and Working Principle 165
7.3 Mechanism of Friction Stir Weld Formation 168
7.3.1 Role of FSW in Material Flow 170
7.3.2 Evolution of Microstructure at Weld Zone 171
7.3.2.1 Nugget Zone 172
7.3.2.2 Thermo-Mechanically Affected Zone 172
7.3.2.3 Heat Affected Zone 173
7.3.2.4 Unaffected Base Material 173
7.4 Process Parameters of FSW 173
7.4.1 FSW Tool 174
7.4.1.1 Tool Materials 174
7.4.1.2 Tool Geometry 175
7.5 Mechanical Properties 181
7.5.1 Hardness 181
7.5.2 Tensile Properties 182
7.6 FSW Defects 183
7.7 Applications 185
7.8 Summary 185
References 185
8 Ultrasonic Spot Welding—Low Energy Manufacturing for Lightweight Fuel Efficient Transport Applications 188
Abstract 188
8.1 Introduction 188
8.2 High Power Ultrasonic Spot Welding 190
8.2.1 Applications 191
8.2.2 Principles 191
8.2.3 Mechanism of Bonding 192
8.2.4 Heat Generation and Temperature Evolution 193
8.2.5 Power and Vibration Evolution 194
8.2.6 Similar Ultrasonic Spot Welding 197
8.2.7 Dissimilar Ultrasonic Spot Welding 202
8.2.8 Finite Element Process Modelling 207
8.3 Summary 209
References 209
Sustainable Manufacturing 213
9 Perspectives on Green Manufacturing 214
Abstract 214
9.1 Introduction 214
9.2 Taxonomy Across Researchers 217
9.2.1 Sustainable Production (SP) 217
9.2.2 Clean Manufacturing (CM) 217
9.2.3 Cleaner Production (CP) 217
9.2.4 Environmentally Conscious Manufacturing (ECM) 218
9.2.5 Green Manufacturing (GM) 218
9.2.6 Environmentally Responsible Manufacturing (ERM) 218
9.2.7 Environmentally Benign Manufacturing (EBM) 219
9.2.8 Sustainable Manufacturing (SM) 219
9.3 Background of Research on Green Manufacturing 219
9.4 Motivations for Green Manufacturing 222
9.4.1 Current Legislation 222
9.4.2 Future Legislation 223
9.4.3 Incentives 223
9.4.4 General Awareness 223
9.4.5 Economical Concerns 223
9.4.6 Competitiveness 224
9.4.7 Customer Demand 224
9.4.8 Supply Chain Pressure 224
9.4.9 Top Management Commitment 224
9.4.10 Company Reputation 225
9.4.11 Technology 225
9.4.12 Organizational Resources 225
9.5 Hindrances to Green Manufacturing 225
9.5.1 Weak Legislation 226
9.5.2 Low Enforcement 226
9.5.3 Uncertain Future Legislation 226
9.5.4 Lack of Awareness 226
9.5.5 High Short-Term Costs 227
9.5.6 Uncertain Benefits 227
9.5.7 Low Customer Demand 227
9.5.8 Trade-Offs 228
9.5.9 Low Top Management Commitment 228
9.5.10 Lack of Organizational Resources 228
9.5.11 Technological Risk 228
9.5.12 Lack of Awareness 229
9.6 Stakeholders of Green Manufacturing 229
9.6.1 Government 229
9.6.2 Employees 229
9.6.3 Consumers 229
9.6.4 Market 230
9.6.5 Media 230
9.6.6 Local Politicians 230
9.6.7 Suppliers 230
9.6.8 Trade Organizations 231
9.6.9 Environmental Advocacy Groups 231
9.6.10 Investors/Shareholders 231
9.7 Current International Status 232
9.8 Conclusions and Future Research Directions 232
References 233
10 Experimental Investigation and Optimization on MQL-Assisted Turning of Inconel-718 Super Alloy 238
Abstract 238
10.1 Introduction 239
10.2 Experimental 240
10.3 Results and Discussions 242
10.3.1 Regression Modelling 243
10.3.2 Analysis of Variance 244
10.3.3 Effect of Process Parameters 244
10.3.4 Optimization 246
10.4 Conclusion 247
References 248
11 Dry and Near-Dry Electric Discharge Machining Processes 250
Abstract 250
11.1 Introduction 251
11.1.1 Un-conventional Machining Processes 251
11.2 Electric Discharge Machining (EDM) 252
11.2.1 Principle of EDM 252
11.2.2 Applications of EDM 253
11.3 Classification of EDM 254
11.3.1 Conventional EDM 255
11.3.2 Powder Mixed EDM (PMEDM) 256
11.3.3 Dry and Near-Dry EDM 257
11.3.3.1 Process Parameters 258
11.3.3.2 Mechanism of Material Removal 262
11.3.3.3 Dielectric Mediums in Dry and Near-Dry EDM 264
11.4 Comparison of Dry, Near-Dry and Conventional EDM 265
11.5 Summary 266
References 266
12 Laser Metal Deposition Process for Product Remanufacturing 268
Abstract 268
12.1 Introduction 269
12.2 Introduction to Laser Metal Deposition Process 270
12.2.1 Working Principle of Laser Metal Deposition Process 270
12.2.2 Capabilities of Laser Metal Deposition Process for Repair and Remanufacturing 273
12.2.3 Review of the Past Work on Use of LMD Process for Repair and Remanufacturing 275
12.3 A Case Study on Laser Metal Deposited Titanium Alloy Powder 282
12.3.1 Introduction 282
12.3.2 Experimental Method 283
12.3.3 Results and Discussion 283
12.4 Sustainability Aspects of Laser Metal Deposition Process 288
12.5 Summary 288
Acknowledgements 289
References 289
Index 293
| Erscheint lt. Verlag | 29.4.2017 |
|---|---|
| Reihe/Serie | Materials Forming, Machining and Tribology | Materials Forming, Machining and Tribology |
| Zusatzinfo | VIII, 294 p. 169 illus., 96 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Technik ► Maschinenbau |
| Schlagworte | Abrasive jet machining • electrochemical machining • Ice-jet machining • Laser Welding • Machining of composites • Magnetic Welding • Plasma machining • Product Life Cycle • Repair of molds-dies |
| ISBN-10 | 3-319-56099-9 / 3319560999 |
| ISBN-13 | 978-3-319-56099-1 / 9783319560991 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich