Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Shaping Light in Nonlinear Optical Fibers (eBook)

eBook Download: PDF
2017
John Wiley & Sons (Verlag)
978-1-119-08814-1 (ISBN)

Lese- und Medienproben

Shaping Light in Nonlinear Optical Fibers -
Systemvoraussetzungen
127,99 inkl. MwSt
(CHF 124,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is a contemporary overview of selected topics in fiber optics. It focuses on the latest research results on light wave manipulation using nonlinear optical fibers, with the aim of capturing some of the most innovative developments on this topic. The book's scope covers both fundamentals and applications from both theoretical and experimental perspectives, with topics including linear and nonlinear effects, pulse propagation phenomena and pulse shaping, solitons and rogue waves, novel optical fibers, supercontinuum generation, polarization management, optical signal processing, fiber lasers, optical wave turbulence, light propagation in disordered fiber media, and slow and fast light. With contributions from leading-edge scientists in the field of nonlinear photonics and fiber optics, they offer an overview of the latest advances in their own research area.  The listing of recent research papers at the end of each chapter is useful for researchers using the book as a reference. As the book addresses fundamental and practical photonics problems, it will also be of interest to, and benefit, broader academic communities, including areas such as nonlinear science, applied mathematics and physics, and optical engineering. It offers the reader a wide and critical overview of the state-of-the-art within this practical - as well as fundamentally important and interesting - area of modern science, providing a useful reference which will encourage further research and advances in the field.



Edited by
Sonia Boscolo,
Aston Institute of Photonic Technologies, Aston University, Birmingham, UK

Christophe Finot, Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-Université de Bourgogne, Dijon, France


This book is a contemporary overview of selected topics in fiber optics. It focuses on the latest research results on light wave manipulation using nonlinear optical fibers, with the aim of capturing some of the most innovative developments on this topic. The book s scope covers both fundamentals and applications from both theoretical and experimental perspectives, with topics including linear and nonlinear effects, pulse propagation phenomena and pulse shaping, solitons and rogue waves, novel optical fibers, supercontinuum generation, polarization management, optical signal processing, fiber lasers, optical wave turbulence, light propagation in disordered fiber media, and slow and fast light. With contributions from leading-edge scientists in the field of nonlinear photonics and fiber optics, they offer an overview of the latest advances in their own research area. The listing of recent research papers at the end of each chapter is useful for researchers using the book as a reference. As the book addresses fundamental and practical photonics problems, it will also be of interest to, and benefit, broader academic communities, including areas such as nonlinear science, applied mathematics and physics, and optical engineering. It offers the reader a wide and critical overview of the state-of-the-art within this practical as well as fundamentally important and interesting area of modern science, providing a useful reference which will encourage further research and advances in the field.

Edited by Sonia Boscolo, Aston Institute of Photonic Technologies, Aston University, Birmingham, UK Christophe Finot, Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-Université de Bourgogne, Dijon, France

Shaping Light in Nonlinear Optical Fibers 3
Contents 7
List of Contributors 15
Preface 19
Structure of the Book 21
1 Modulation Instability, Four-Wave Mixing and their Applications 25
1.1 Introduction 25
1.2 Modulation Instability 26
1.2.1 Linear and Nonlinear Theory of MI 26
1.2.2 Polarization MI (PMI) in Birefringent Fibers 31
1.2.3 Collective MI of Four-Wave-Mixing 33
1.2.4 Induced MI Dynamics, Rogue Waves, and Optimal Parametric Amplification 35
1.2.5 High-Order Induced MI 37
1.2.6 MI Recurrence Break-Up and Noise 38
1.3 Four-Wave Mixing Dynamics 41
1.3.1 FWM Processes with Two Pumps 41
1.3.2 Bragg Scattering FWM 42
1.3.3 Applications of BS-FWM to Quantum Frequency Conversion 44
1.4 Fiber Cavity MI and FWM 44
1.4.1 Dynamics of MI in a Passive Fiber Cavity 44
1.4.2 Parametric Resonances and Period Doubling Phenomena 47
1.4.3 FWM in a Fiber Cavity for Optical Buffer Applications 49
References 51
2 Phase-Sensitive Amplification and Regeneration 59
2.1 Introduction to Phase-Sensitive Amplifiers 59
2.2 Operation Principles and Realization of Phase-Sensitive Parametric Devices 60
2.3 One-Mode Parametric Processes 64
2.4 Two-Mode Parametric Processes 78
2.5 Four-Mode Parametric Processes 80
2.6 Conclusion 82
Acknowledgments 83
References 84
3 Novel Nonlinear Optical Phenomena in Gas-Filled Hollow-Core Photonic Crystal Fibers 89
3.1 Introduction 89
3.2 Nonlinear Pulse Propagation in Guided Kerr Media 90
3.3 Ionization Effects in Gas-Filled HC-PCFs 91
3.3.1 Short Pulse Evolution 92
3.3.2 Long-Pulse Evolution 96
3.4 Raman Effects in Gas-Filled HC-PCFs 100
3.4.1 Density Matrix Theory 100
3.4.2 Strong Probe Evolution 106
3.5 Interplay Between Ionization and Raman Effects in Gas-Filled HC-PCFs 109
3.6 Conclusion 113
Acknowledgments 113
References 113
4 Modulation Instability in Periodically Modulated Fibers 119
4.1 Introduction 119
4.2 Basic Theory of Modulation Instability in Periodically Modulated Waveguides 120
4.2.1 Piecewise Constant Dispersion 124
4.3 Fabrication of Periodically Modulated Photonic Crystal Fibers 125
4.3.1 Fabrication Principles 125
4.3.2 Typical Example 125
4.4 Experimental Results 128
4.4.1 Experimental Setup 128
4.4.2 First Observation of Multiple Simultaneous MI Side Bands in Periodically Modulated Fibers 128
4.4.3 Impact of the Curvature of the Dispersion 129
4.4.4 Other Modulation Formats 131
4.5 Conclusion 135
Acknowledgments 135
References 135
5 Pulse Generation and Shaping Using Fiber Nonlinearities 139
5.1 Introduction 139
5.2 Picosecond Pulse Propagation in Optical Fibers 140
5.3 Pulse Compression and Ultrahigh-Repetition-Rate Pulse Train Generation 141
5.3.1 Pulse Compression 141
5.3.2 High-Repetition-Rate Sources 145
5.4 Generation of Specialized Temporal Waveforms 148
5.4.1 Pulse Evolution in the Normal Regime of Dispersion 148
5.4.2 Generation of Parabolic Pulses 149
5.4.3 Generation of Triangular and Rectangular Pulses 151
5.5 Spectral Shaping 152
5.5.1 Spectral Compression 153
5.5.2 Generation of Frequency-Tunable Pulses 156
5.5.3 Supercontinuum Generation 157
5.6 Conclusion 161
Acknowledgments 162
References 162
6 Nonlinear-Dispersive Similaritons of Passive Fibers: Applications in Ultrafast Optics 171
6.1 Introduction 171
6.2 Spectron and Dispersive Fourier Transformation 174
6.3 Nonlinear-Dispersive Similariton 175
6.3.1 Spectronic Nature of NL-D Similariton: Analytical Consideration 176
6.3.2 Physical Pattern of Generation of NL-D Similariton, Its Character and Peculiarities on the Basis of Numerical Studies 177
6.3.3 Experimental Study of NL-D Similariton by Spectral Interferometry (and also Chirp Measurements by Spectrometer and Autocorrelator) 179
6.3.4 Bandwidth and Duration of NL-D Similariton 182
6.3.5 Wideband NL-D Similariton 183
6.4 Time Lens and NL-D Similariton 184
6.4.1 Concept of Time Lens: Pulse Compression—Temporal Focusing, and Spectral Compression—“Temporal Beam” Collimation/Spectral Focusing 184
6.4.2 Femtosecond Pulse Compression 185
6.4.3 Classic and “All-Fiber” Spectral Compression 187
6.4.4 Spectral Self-Compression: Spectral Analogue of Soliton-Effect Compression 189
6.4.5 Aberration-Free Spectral Compression with a Similariton-Induced Time Lens 191
6.4.6 Frequency Tuning Along with Spectral Compression in Similariton-Induced Time Lens 192
6.5 Similariton for Femtosecond Pulse Imaging and Characterization 196
6.5.1 Fourier Conversion and Spectrotemporal Imaging in SPMXPM-Induced Time Lens 197
6.5.2 Aberration-Free Fourier Conversion and Spectrotemporal Imagingin Similariton-Induced Time Lens: Femtosecond Optical Oscilloscope 201
6.5.3 Similariton-Based Self-Referencing Spectral Interferometry 205
6.5.4 Simple Similaritonic Technique for Measurement of Femtosecond Pulse Duration, an Alternative to the Autocorrelator 209
6.5.5 Reverse Problem of NL-D Similariton Generation 211
6.5.6 Pulse Train Shaped by Similaritons’ Superposition 212
6.6 Conclusion 214
References 215
7 Applications of Nonlinear Optical Fibers and Solitons in Biophotonics and Microscopy 223
7.1 Introduction 223
7.2 Soliton Generation 224
7.2.1 Fundamental Solitons 224
7.2.2 A Sidenote on Dispersive Wave Generation 226
7.2.3 Spatial Properties of PCF Output 228
7.3 TPEF Microscopy 228
7.4 SHG Microscopy 229
7.5 Coherent Raman Scattering 230
7.6 MCARS Microscopy 231
7.7 ps-CARS Microscopy 234
7.8 SRS Microscopy 235
7.9 Pump-Probe Microscopy 237
7.10 Increasing the Soliton Energy 239
7.10.1 SC-PBG Fibers 240
7.10.2 Multiple Soliton Generation 241
7.11 Conclusion 242
References 242
8 Self-Organization of Polarization State in Optical Fibers 249
8.1 Introduction 249
8.2 Principle of Operation 251
8.3 Experimental Setup 253
8.4 Theoretical Description 254
8.5 Bistability Regime and Related Applications 258
8.6 Alignment Regime 262
8.7 Chaotic Regime and All-Optical Scrambling for WDM Applications 265
8.8 Future Perspectives: Towards an All-Optical Modal Control in Fibers 271
8.9 Conclusion 274
Acknowledgments 275
References 275
9 All-Optical Pulse Shaping in the Sub-Picosecond Regime Based on Fiber Grating Devices 281
9.1 Introduction 281
9.2 Non-Fiber-Grating-Based Optical Pulse Shaping Techniques 282
9.3 Motivation of Fiber-Grating Based Optical Pulse Shaping 284
9.3.1 Fiber Bragg Gratings (FBGs) 288
9.3.2 Long Period Gratings (LPGs) 291
9.4 Recent Work on Fiber Gratings-Based Optical Pulse Shapers: Reaching the Sub-Picosecond Regime 292
9.4.1 Recent Findings on FBGs 292
9.4.2 Recent Findings on LPGs 300
9.5 Advances towards Reconfigurable Schemes 308
9.6 Conclusion 309
References 309
10 Rogue Breather Structures in Nonlinear Systems with an Emphasis on Optical Fibers as Testbeds 317
10.1 Introduction 317
10.2 Optical Rogue Waves as Nonlinear Schrödinger Breathers 319
10.2.1 First-Order Breathers 319
10.2.2 Second-Order Breathers 325
10.3 Linear-Nonlinear Wave Shaping as Rogue Wave Generator 327
10.3.1 Experimental Configurations 328
10.3.2 Impact of Initial Conditions 330
10.3.3 Higher-Order Modulation Instability 332
10.3.4 Impact of Linear Fiber Losses 333
10.3.5 Noise and Turbulence 335
10.4 Experimental Demonstrations 335
10.4.1 Peregrine Breather 336
10.4.2 Periodic First-Order Breathers 337
10.4.3 Higher-Order Breathers 339
10.5 Conclusion 341
Acknowledgments 342
References 342
11 Wave-Breaking and Dispersive Shock Wave Phenomena in Optical Fibers 349
11.1 Introduction 349
11.2 Gradient Catastrophe and Classical Shock Waves 350
11.2.1 Regularization Mechanisms 351
11.3 Shock Formation in Optical Fibers 353
11.3.1 Mechanisms of Wave-Breaking in the Normal GVD Regime 354
11.3.2 Shock in Multiple Four-Wave Mixing 357
11.3.3 The Focusing Singularity 359
11.3.4 Control of DSW and Hopf Dynamics 360
11.4 Competing Wave-Breaking Mechanisms 361
11.5 Resonant Radiation Emitted by Dispersive Shocks 362
11.5.1 Phase Matching Condition 363
11.5.2 Step-Like Pulses 364
11.5.3 Bright Pulses 365
11.5.4 Periodic Input 366
11.6 Shock Waves in Passive Cavities 367
11.7 Conclusion 369
Acknowledgments 369
References 369
12 Optical Wave Turbulence in Fibers 375
12.1 Introduction 375
12.2 Wave Turbulence Kinetic Equation 378
12.2.1 Supercontinuum Generation 378
12.2.2 Breakdown of Thermalization 384
12.2.3 Turbulence in Optical Cavities 389
12.3 Weak Langmuir Turbulence Formalism 395
12.3.1 NLS Model 396
12.3.2 Short-Range Interaction: Spectral Incoherent Solitons 396
12.3.3 Long-Range Interaction: Incoherent Dispersive Shock Waves 399
12.4 Vlasov Formalism 402
12.4.1 Incoherent Modulational Instability 404
12.4.2 Incoherent Solitons in Normal Dispersion 405
12.5 Conclusion 408
Acknowledgments 409
References 409
13 Nonlocal Disordered Media and Experiments in Disordered Fibers 419
13.1 Introduction 419
13.2 Nonlinear Behavior of Light in Transversely Disordered Fiber 420
13.3 Experiments on the Localization Length in Disordered Fibers 423
13.4 Shock Waves in Disordered Systems 427
13.5 Experiments on Shock Waves in Disordered Media 431
13.5.1 Experimental Setup 431
13.5.2 Samples 431
13.5.3 Measurements 433
13.6 Conclusion 436
Acknowledgments 437
References 437
14 Wide Variability of Generation Regimes in Mode-Locked Fiber Lasers 439
14.1 Introduction 439
14.2 Variability of Generation Regimes 441
14.3 Phenomenological Model of Double-Scale Pulses 449
14.4 Conclusion 452
Acknowledgments 453
References 453
15 Ultralong Raman Fiber Lasers and Their Applications 459
15.1 Introduction 459
15.2 Raman Amplification 460
15.3 Ultralong Raman Fiber Lasers Basics 463
15.3.1 Theory of Ultralong Raman Lasers 463
15.3.2 Amplification Using URFLs 468
15.4 Applications of Ultralong Raman Fiber Lasers 476
15.4.1 Applications in Telecommunications 477
15.4.2 Applications in Sensing 479
15.4.3 Supercontinuum Generation 479
15.5 Conclusion 480
References 480
16 Shaping Brillouin Light in Specialty Optical Fibers 485
16.1 Introduction 485
16.2 Historical Background 486
16.3 Theory 487
16.3.1 Elastodynamics Equation 487
16.4 Tapered Optical Fibers 489
16.4.1 Principles 489
16.4.2 Experiments 490
16.4.3 Numerical Simulations 491
16.4.4 Photonic Crystal Fibers 493
16.5 Conclusion 497
References 498
Index 501
Supplemental Images 506
EULA 521

Erscheint lt. Verlag 8.3.2017
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Communication technology • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • fiber optics • Kommunikationstechnik • light wave technology • Optical Communications • Optische Nachrichtentechnik • Photonics • Photonics & Lasers • Photonik u. Laser
ISBN-10 1-119-08814-3 / 1119088143
ISBN-13 978-1-119-08814-1 / 9781119088141
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kommunikationssysteme mit EIB/KNX, LON, BACnet und Funk

von Thomas Hansemann; Christof Hübner; Kay Böhnke

eBook Download (2025)
Hanser (Verlag)
CHF 38,95
Verfahren zur Berechnung elektrischer Energieversorgungsnetze

von Karl Friedrich Schäfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 107,45